Crystal growth kinetics in cordierite and diopside glasses in wide temperature ranges

Stefan Reinsch a,*, Marcio Luis Ferreira Nascimento b, Ralf Müller a, Edgar Dutra Zanotto b

a Federal Institute for Materials Research and Testing, 12205 Berlin, Germany
b Vitreous Materials Laboratory, Department of Materials Engineering, Federal University of São Carlos, 13595-905 São Carlos-SP, Brazil

ABSTRACT

We measured and collected literature data for the crystal growth rate, $u(T)$, of μ-cordierite (2MgO·2Al₂O₃·5SiO₂) and diopside (CaO·MgO·2SiO₂) in their isochemical glass forming melts. The data cover exceptionally wide temperature ranges, i.e., 800–1350 °C for cordierite and 750–1378 °C for diopside. The maximum of $u(T)$ occurs at about 1250 °C for both systems. A smooth shoulder is observed around 970 °C for μ-cordierite. Based on measured and collected viscosity data, we fitted $u(T)$ using standard crystal growth models. For diopside, the experimental $u(T)$ fits well to the 2D surface nucleation model and also to the screw dislocation growth mechanism. However, the screw dislocation model yields parameters of more significant physical meaning. For cordierite, these two models also describe the experimental growth rates. However, the best fittings of $u(T)$ including the observed shoulder, were attained for a combined mechanism, assuming that the melt/crystal interface growing from screw dislocations is additionally roughened by superimposed 2D surface nucleation at large undercoolings, starting at a temperature around the shoulder. The good fittings indicate that viscosity can be used to assess the transport mechanism that determines crystal growth in these two systems, from the melting point T_m down to about T_s, with no sign of a breakdown of the Stokes–Einstein/Eyring equation.

1. Introduction

Crystal growth kinetics in glass forming liquids has been extensively studied and reviewed elsewhere [1–5]. For isochemical or polymorphic crystallization, the crystal growth rates have been described in terms of standard models of interface-controlled growth [see, e.g., [6–8]] such as normal growth, screw dislocation growth or 2D surface nucleated growth. Detailed studies of crystal growth mechanisms are known for various glass forming compositions, such as SiO₂ and GeO₂ (normal growth) [9,10], Na₂O·2SiO₂ (screw dislocation) [11] and K₂O·4B₂O₃ (2D nucleated growth) [12]. However, in most studies the inferred crystal growth mechanisms are typically restricted to temperature ranges near the melting point, T_m, or somewhat above the glass transformation temperature, T_g, where crystal growth rates can be most easily measured.

In one of the first studies of crystal growth in glasses in wide temperature ranges, Burgner and Weinberg [13] analyzed the growth rates of internally nucleated lithium disilicate crystals in isochemical Li₂O·2SiO₂ glass forming melts between the glass transition temperature, T_g, and the melting point, T_m. Their analysis suggested that different governing growth mechanisms may be active for distinct temperature ranges, and that the usual phenomenological models could be applicable only for limited temperature ranges.

Meanwhile, crystal growth rate data for other two silicate glasses, cordierite and diopside, have also been measured in similarly broad temperature ranges. Thus, the extensive studies of surface nucleated, isochemical crystallization of high-quartz solid solution crystals, denominated “μ-cordierite” (2MgO·2Al₂O₃·5SiO₂), in cordierite glasses reported in Refs. [14–21] allow a similar analysis. Some of these studies were part of a cooperative effort of the TC 7 Committee of the International Commission on Glass [22], which’s aim was to advance the understanding of surface crystallization phenomena. Herein, numerous glasses close to the stoichiometric cordierite composition were modified in different laboratories and crystal growth experiments were conducted over a long period of time covering various experimental conditions.

As another case of surface nucleated crystallization, the crystal growth rates of diopside (CaO·MgO·2SiO₂) in isochemical melts have also been comprehensively studied. Thus, crystal growth rate data are known for diopside glasses between 750–1155 °C and 1277–1378 °C [14,23–27]. In addition, thermodynamic and kinetic data, such as melting enthalpy and viscosity as a function of temperature are available for both systems, which facilitate quantitative comparisons between theory and experiment.

The objective of the present work is thus to summarize all measured growth rate data for μ-cordierite and diopside crystals in...
their isochemical liquids in wide temperature ranges, then to analyze and discuss their observed temperature dependencies in terms of the classical crystal growth models. We also present a proposal using combined growth mechanisms to explain the shoulder in the crystal growth curve of μ-cordierite.

2. Experimental

2.1. Samples

2.1.1. Cordierite glasses

Most of the data for the crystal growth rates of μ-cordierite refer to glasses having the nominal composition of cordierite (in wt%): 51.3 SiO₂, 34.9 Al₂O₃ and 13.8 MgO. In this work and in Refs. [14,15,19] cordierite glasses were melted from reagent grade MgO and Al₂O₃ (both from Merck) and SiO₂ (quartz sand, Walbeck GmbH, Weferlingen) at 1590 °C in air for at least 8 h in Pt-crucibles. Meltings of 500 ml batches were carried out in conventional electric furnaces and in medium frequency inductive furnaces (4 kHz). In the latter case, glass homogeneity was improved by stirring. Diaz-Mora et al. [20,21] used two cordierite glasses from Schott Glaswerke: one glass (B9455) had the nominal cordierite composition; another (GM30870) had 14.6 MgO, 33.2 Al₂O₃, 52.3 SiO₂ wt%. Yuritsyn et al. [16,17] used stoichiometric cordierite glasses melted from chemically pure Al(OH)₃, MgCO₃ and SiO₂ - n-H₂O in Pt/Rh crucibles at 1600 °C for 4 h. All compositions are summarized in Table 1.

In this work and Refs. [14,15,19], glass plates of \(\approx 10 \times 15 \times 1 \) cm³ were prepared by casting the melts onto steel plates and slowly cooled to room temperature from 750 °C. Wet chemical analysis of the quenched glasses showed that no oxide component deviates more than 0.8 wt% from the nominal composition. The water content determined by hot vacuum extraction and IR spectroscopy [28] for one of the glasses was 0.033 mol/l (226 wt ppm).

2.1.2. Diopside glasses

The diopside glasses reported by several authors [14,23–27,29–34] and that used in the present study were melted in air in Pt crucibles. In this work and Ref. [14], glass plates of \(\approx 10 \times 15 \times 1 \) cm³ were splat cooled onto steel plates and slowly cooled to room temperature from 740 °C. Briggs and Carruthers [23] made an X-ray fluorescence analysis confirming that the composition of their glass was very close to the nominal composition, and was free of iron, titanium and alkali metal oxides, but had 0.25 mol% Al₂O₃. Nascimento et al. [25] used the ICP technique for chemical analysis, which showed that his glass composition deviates less than 1 wt% from the diopside stoichiometry. Reinsch [14] used a diopside glass with addition of 1 wt% Al₂O₃. Chemical analysis of this glass [19.7 MgO, 25.8 CaO, 54.5 SiO₂, 1 Al₂O₃ wt%] showed that no oxide component deviates more than 1 wt% from the nominal composition. The water content measured by hot vacuum extraction was 0.12 mol/l (758 wt ppm) [28]. Zanotto [27] used also a diopside glass with 1 wt% Al₂O₃. Kirkpatrick et al. [24] analyzed their glass with an electron microprobe, indicating a composition of 19.1 MgO, 26.4 CaO, 56.2 SiO₂ wt%, thus having only a minor discrepancy from the nominal diopside composition. Unfortunately, however, impurity and water contents were not always reported, but all these glasses have small departures from the stoichiometric diopside (18.61 MgO, 25.9 CaO, 55.49 SiO₂ wt%). All compositions are summarized in Table 1.

2.2. Measurements

2.2.1. Viscosity

In the present work, the viscosities of cordierite and diopside melts were determined by complementary methods. \(T_g \) was determined by a horizontal dilatometer (heating rate 5 K/min, Netzsch 402 E). Beam bending viscometry (heating rate 5 K/min, BAM) was used for the range \(\log_{10}(\eta/\text{Pa s}) = 12.3 - 9 \) and for \(\log_{10}(\eta/\text{Pa s}) < 5 \) (\(T > 1000 \) °C) rotational viscometry (BAM, measuring head Haake VT550) was applied. The viscosity of the diopside melt was also measured by Giess and Knickerbocker [35] at 900 and 920 °C with a parallel plate viscometer. Yuritsyn et al. obtained \(T_g \) data by means of dilatometry [16]. The viscosity of the diopside melt was measured by Licko and Danek [29] in an oscillating viscometer using a platinum–ruthenium crucible and a cylinder with conical end. Nascimento et al. [25], Kozu and Kani [30] and McCaffrey et al. [31] used a rotation viscometer. Sipp et al. [33] measured \(\eta \) by a compression method. Taniguchi [34] applied the counterbalanced method with Pt body and crucible, and the fiber elongation method. And finally, Neuville and Richet [32] did not disclose the technique used in their work.

2.2.2. Crystal growth rate

2.2.2.1. μ-Cordierite. Crystal growth rate measurements were performed using bulk pieces of glass (\(\approx 5 \times 5 \times 5 \) mm³) with fractured, polished, or SiC ground surfaces in the present study as well as in Refs. [14–21]. Most of the thermal treatments were performed in air with \(\approx 20\% \) relative humidity (dew point \(\approx 8.5 \) °C). The influence of the ambient water vapor pressure was checked by crystal growth experiments in argon/air atmospheres of different humidity [14,36]. Sipp et al. [33] measured \(\eta \) by a compression method. Different techniques were used to measure the crystal growth rates of μ-cordierite at low and high temperatures. Below 830 °C we measured the growth of pre-existing crystals by electron or optical microscopy (increase of the maximum radius of selected surface crystals). Between 830 and 920 °C the maximum radius of crystals grown during one-step crystallization treatments were measured. Above 1000 °C we measured the thickness of the crystalline surface layer. Between 900 and 1050 °C both methods were used. Isothermal treatments at 830–1100 °C were carried out in a conventional laboratory furnace. The samples were driven into the hot furnace using a platinum thermocouple as the sample holder. In other cases, annealing steps were made in a quartz glass tube furnace under controlled ambient conditions within a steel glove box. The accuracy of temperature measurement was \(\pm 1 \) K. Short time thermal treatments at high temperatures (1100–1350 °C) were performed in a specially designed vertical corundum tube furnace. The thermocouple and the platinum specimen holder were quickly moved along the tube axis where a linear gradient of 20 k/cm between 300 and 1500 °C was maintained. Due to the small heat capacities of small samples and the platinum holder, very high heating rates, up to about 1200 K/min, at least in the vicinity of the glass surface were attained. An empty sample holder

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of all glasses used for crystal growth measurements in wt%</td>
</tr>
<tr>
<td>Cordierite glasses</td>
</tr>
<tr>
<td>Cordierite</td>
</tr>
<tr>
<td>This work and [13,14,18]</td>
</tr>
<tr>
<td>Yuritsyn [15,16]</td>
</tr>
<tr>
<td>Diaz-Mora [19,20]</td>
</tr>
<tr>
<td>Diopside glasses</td>
</tr>
<tr>
<td>Diopside</td>
</tr>
<tr>
<td>This work and Reinsch [13]</td>
</tr>
<tr>
<td>Nascimento [24]</td>
</tr>
<tr>
<td>Briggs [22]</td>
</tr>
<tr>
<td>Zanotto [26]</td>
</tr>
<tr>
<td>Kirkpatrick [23]</td>
</tr>
</tbody>
</table>
reached thermal equilibrium within 10 s. We measured the thickness of the crystalline surface layer between 200 and 1100 μm using annealing times between 1 and 3 min to ensure thermal equilibrium at least within the near surface layer of the sample. Nevertheless, for these short time measurements we have to assume a higher inaccuracy than for the other measurements. It is not possible to quantify this inaccuracy because of the unknown thermal conductivity of our samples and the resulting influence on the measured crystal layer thickness. But, the error is likely not larger than 50%, which is twice the size of the used symbols in Fig. 2(a) still fully embedded within the present data scatter.

2.2.2.2. Diopside. Numerous crystal growth rate data for diopside glasses between 750–1155 °C and 1277–1378 °C are known from literature. For instance, Briggs and Carruthers [23] measured crystal growth rates from 900 to 1150 °C by hot stage microscopy. Zanotto [27] measured the growth rate at 820 °C. Reinsch [14] and new measurements shown in this article) measured μ from 750 to 1050 °C by optical microscopy and SEM on polished and fractured surfaces. Fokin and Yufrisins [37] measured growth rates between 800 and 875 °C by optical microscopy using polished and fractured surfaces. Nascimento et al. [25] measured diopside crystals on fire polished surfaces at 913, 923 and 950 °C. Crystal growth rates at low undercoolings (ΔT = Tm – T ≤ 115 K) were determined by Kirkpatrick et al. [24] using a hot stage microscope.

2.3. Melting temperature

The melting temperature of diopside in its isochemoal melt is Tm = 1397 °C [38]. Tm of the metastable μ-cordierite cannot be directly measured. Therefore, we assume that its upper bound is the melting point of the stable high temperature polymorph of cordierite, denoted as indialite, h- or α-cordierite, at 1467 °C [38]. The lower bound of Tm is assumed to be ≈ 1350 °C since metastable μ-cordierite is detectable as the primary crystal phase up to 1300 °C [19].

3. Results

3.1. Viscosity

Viscosity data for cordierite melts are shown in Fig. 1 (upper curve). Our data are combined with data of Giess and Knickerbocker [35] and Yufrisins et al. [16]. The fitted VFTH curve for cordierite glass is given by Eq. (1a), where n is given in Pa s and T in K. The measured viscosity of our diopside melt and related literature data [25,27,29–34] are also shown in Fig. 1 (lower curve). The resulting average curve for diopside, by fitting all data, is given by Eq. (1b), with n in Pa s, and T in K. For any given temperature, the cordierite melt is more viscous than liquid diopside

3.2. Crystal growth rates

Crystal growth rates of μ-cordierite in its isochemoal melt, measured in this work (open circles in Fig. 2(a)) and in previous studies [14–21], and similar data for diopside, measured here (open circles in Fig. 2(b)) and in Refs. [14,23–25,27,37], are shown in Fig. 2(a) and (b), respectively. These collected data cover an exceptionally wide temperature range, i.e. 800–1350 °C (μ-cordierite) and 750–1378 °C (diopside). The maximum of u(T) occurs at about 1250 °C for both glasses. A smooth shoulder is observed around 970 °C for μ-cordierite (arrow in Fig. 2(a)). For diopside, such a shoulder is much less pronounced and possibly hidden by the large data scatter in this temperature range. As expected from the viscosity curves, the crystal growth rates of diopside are somewhat higher than of μ-cordierite at any temperature. However, at their respective Tg (1012.3 Pa s) the growth rate of diopside is about one order of magnitude lower than that of μ-cordierite.

3.2.1. Data scatter

Whereas for diopside, u(T) data from different authors show remarkable similarity, significant scatter is evident for μ-cordierite. This scatter can be partially attributed to the decisive influence of humidity in different melts. This effect was measured in Refs. [14,36], where, e.g., u at 945 °C increased from 0.2 to 0.6 μm min⁻¹ for increasing air humidity (dew points between –60 and +25 °C). The other important factor is that liquid diopside is much more polymerised (has much more Q² units in NMR notation) than cordierite melt, thus its highly broken structure is not so sensitive to a few percent more or less impurities.

Another source of data scatter could be impurities and small departures of stoichiometry and the different techniques used to obtain crystal growth rate data, i.e. by measuring the dimension of separate crystals or the thickness of the crystalline surface layer. However, these two types of data are not significantly different, especially in logarithmic scale. This finding is illustrated for μ-cordierite in Fig. 3(a), where a large μ-cordierite surface crystal is growing from a pristine, vacuum-fractured glass surface (parallel to the paper plane). Its radius is comparable to the thickness of the μ-cordierite surface layer that grew perpendicularly from the sample surfaces (the latter surface was ground with SiC causing a high number density of surface crystals). Small deviations (a factor of two) due to the crystal orientation would not appear in the logarithmic scale of Fig. 2(a). Fig. 3(b) shows diopside crystals on a polished glass surface annealed in air at 830 °C for 210 min. Diopside crystals mainly appear as separately grown squares.

4. Data analysis

4.1. Basic equations

In terms of the standard crystal growth models, the interface-controlled crystal growth rate u(T) is given by Eq. (2) [1,6], where
Fig. 2. (a) Crystal growth rate, \(u \), of \(\mu \)-cordierite in its isothermal liquid vs. temperature, \(T \). Points: ○: this work and [14,15,19]; □: Yuritsin [16,17]; △: Hanay [18]; Δ: Diaz-Mora [20,21]. (b) Crystal growth rate, \(u \), of diopside in its isothermal liquid vs. temperature, \(T \). Points: ○: this work, [14]; ◆: Nascimento [25]; □: Zanotto [27]; Δ: Kirkpatrick et al. [24]; □: Briggs et al. [23]; □: Fokin [26]. Arrows indicate the dilatometric glass transition temperature, \(T_g \), and the melting temperature, \(T_m \). Possible upper and lower bounds for \(T_m \) according to 2.3 are indicated for metastable \(\mu \)-cordierite in (a). The maximum error is about twice the size of the used symbols.

\[
d \text{ in } m \text{ is the size of the molecular building unit, } Z(T) \text{ is the attachment flow in } m^2 s^{-1}, f(T) \text{ is the fraction of preferred growth sites at the interface, } \Delta G(T) \text{ the bulk free energy change upon crystallization, } R \text{ the gas constant, and } T \text{ the absolute temperature.}
\]

\[
u(T) = d \cdot Z(T) \cdot f(T) \cdot \left[1 - \exp \left(-\frac{\Delta G(T)}{RT} \right) \right].
\]

\[\text{Eq. (2)} \]

\[
d \text{ is estimated from the volume of a building unit according to Eq. (2a), where this building unit is set to the formula unit, } V_m \text{ is its crystal molar volume, and } N_A \text{ is the Avogadro number}
\]

\[
d = \sqrt[3]{V_m/N_A}.
\]

\[\text{Eq. (2a)} \]

\[
Z(T) \text{ is given by Eq. (3a) [7], where } \lambda \text{ is the jump distance, } c \leq 1 \text{ is a steric factor, and } k_B \text{ is the Boltzmann constant. Eq. (3a) assumes that the molecular motion required for crystal growth is similar to that involved in shear viscous flow in the bulk liquid (Eyring assumption)}
\]

\[
Z(T) = \frac{c}{d^2} \frac{k_B T}{\eta(T)}.
\]

\[\text{Eq. (3a)} \]

The first two terms in Eq. (2), \(d^2 \cdot Z(T) \) in m s^{-1}, simplify to \(d \cdot v \), where \(v \) is the jump frequency in s^{-1} defined by Eq. (3b) [2], when \(c = 1 \) and \(d = \lambda \) are assumed. \(b \) in Eq. (3b) represents terms of weak temperature dependence

\[
v(T) = \frac{k_B T}{d \eta(T)} = b/\eta(T).
\]

\[\text{Eq. (3b)} \]

For \(f(T) \), the fraction of preferred growth sites, three phenomenological models are frequently used [1,2]. For normal growth, the crystal/melt interface is rough on atomic scale, i.e. almost every site allows the attachment of new building units, and \(f(T) \approx 1 \).

According to the screw dislocation model, the crystal/melt interface is smooth on atomic scale but plagued by screw dislocations. Growth takes place at step sites provided by screw dislocations intersecting the interface, and \(f_s(T) \) is expressed by Eq. (4) [1,39], where \(\sigma \) is the specific surface energy of the melt-crystal interface, and \(c_s \) is a constant

\[
f_s(T) = c_s \frac{d\Delta G(T)}{4\pi \sigma V_m}.
\]

\[\text{Eq. (4)} \]

In the 2D secondary surface nucleation growth model, the surface is atomically smooth and free from defects. Growth occurs by formation of two-dimensional nuclei on the interface, followed by lateral growth, and \(f_{2D}(T) \) is expressed by Eq. (5a) [1,7]

\[
f_{2D}(T) = c_{2D} \exp \left(\frac{W(T)}{k_B T} \right)
\]

\[\text{Eq. (5a)} \]

(4b) representing all terms of weak temperature dependence by \(B \) according to Eq. (5c) [2]

\[
f_{2D}(T) \propto \exp \left(-\frac{B}{T \Delta G(T)} \right).
\]

\[\text{Eq. (5b)} \]

\[
f_{2D}(T) \propto \exp \left(-\frac{B}{T \Delta G(T)} \right).
\]

\[\text{Eq. (5c)} \]

Furthermore, a combined mechanism is considered here. We assume that the melt/crystal interface, growing from screw dislocation defects, is additionally roughened by superimposed 2D surface nucle-
ulation, particularly at large undercoolings. This situation is schematically illustrated in Fig. 4 and represented by Eq. (6). The constants c_i and c_{2D} were treated as freely adjustable with $f_i > f_{2D}$ and $f_i + f_{2D} < 1$ is ensured. In this way, the normal growth model always yields the maximum values of $u(T)$

$$f_i(T) = f_i(T) + f_{2D}(T).$$

Finally, the bracket in Eq. (2) gives the occupation probability of growth sites, which depends on $\Delta G(T)$, the bulk free energy change upon crystallization. $\Delta G(T)$ can be approximated by Eq. (7a) for small undercoolings, $\Delta T = T_m - T$, and by Eq. (7b) for wide temperature ranges $\Delta T < T < T_m$, where T_m is the melting point of the crystal in its isochemical melt [1,7]. For binary alkali silicate glasses, Eqs. (7a) and (7b) were found to be accurate for small undercoolings only, giving for other cases only an upper and lower bound for ΔG, respectively,

$$\Delta G(T) = \frac{\Delta H_m \cdot \Delta T}{T_m}, \quad (7a)$$

$$\Delta G(T) = \frac{\Delta H_m \cdot (\Delta T - T)}{T_m}, \quad (7b)$$

4.2. Estimation of crystal/melt interfacial energy

Uhlmann and Uhlmann[2] proposed a simple method to estimate the crystal/melt interfacial energy, σ. Expressing all the terms of weak temperature dependence in Eq. (2), by B (Eq. (5c)), b (Eq. (3b)), and C he wrote for the 2D surface nucleated growth model

$$u(T) = \frac{C_b}{T} \exp \left(-\frac{B}{T \Delta G(T)}\right)$$

or

$$\ln u = \ln C_b - \frac{B}{T \Delta G(T)}$$

Assuming B and C_b as constants, plots of $\ln(u)$ versus $(\Delta T)^{-1}$ should yield straight lines of negative slope B. σ can then be obtained from B according to Eq. (5c). σ is often represented in terms of α used in the Skapski–Turnbull expression [41]:

$$\alpha = \frac{\sigma}{\Delta H_m} \sqrt{N_0 V_m}.$$

For C_{b}-cordierite, a plot of $\ln(u)$ versus $(\Delta T)^{-1}$ is shown in Fig. 5. Confirming previous $u(T)$ studies in wide temperature ranges [2,13], the experimental data cannot be fitted by a single set of parameters. At least, two straight lines with widely different slopes, B, might be fitted. Each B yields two values of α according the small and large crystal case ($\epsilon = 1$ or 3 in Eq. (5c)). The calculated values of σ and α are shown in Table 2. Due to the uncertain melting point of C_{b}-cordierite ($T_m = 1350–1467^\circ$C), we considered $\Delta H_m = 175$ and 190 kJ/mol for the lower and upper bound of T_m, respectively, both taken from [42]. The molar volume of the crystal building unit (one formulae unit) is $V_m = 22.59 \times 10^5$ m3/mol [42]. Taking slope 1 (small undercoolings), α from the 2D nucleation-growth analysis is $0.06 < \alpha < 0.2$, which are lower than the well-known values derived from Classical Nucleation Theory (CNT) for several other silicate glasses ($0.4 < \alpha < 0.6$ [43,44]). Taking slope 2, α ranges between 0.36 and 1.07, i.e. not far from the expected range estimated from CNT, and could thus corroborate the 2D surface nucleation as the operative growth mechanism for this system for large undercoolings.

For diopside, a plot of $\ln(u)$ versus $(\Delta T)^{-1}$ is shown by Fig. 6. Surface energies σ and α obtained from the fitted slopes are given in Table 2 ($\Delta H_m = 138$ kJ/mol [38], and $V_m = 6.61 \times 10^5$ m3/mol). As for C_{b}-cordierite, the growth rate data for diopside can be fitted by two straight lines with widely different slopes. The α values from slope 1 are $0.04 < \alpha < 0.07$, which are far below the well-known values derived from CNT, while α values from slope 2, $0.24 < \alpha < 0.75$, are mostly within the expected range estimated from CNT.

4.3. Direct fitting

Crystal growth mechanism and σ may also be inferred from a direct fitting, which can be performed by dropping the assumptions $C_b = constant$, with $d \approx \lambda$ (used in Figs. 5 and 6). The best fitting results are shown in Figs. 7 and 8, for C_{b}-cordierite and diopside, respectively. We used Eqs. (1), (2), (3a) and (7b) with $f = 1$ for the normal growth model. For the screw dislocation model, f was calculated by Eq. (4). For the 2D surface nucleation model, f is set to Eq. (5a). In case of the combined mechanisms, both terms of f are superimposed according to Eq. (6). Due to the uncertain melting point of C_{b}-cordierite $T_m = 1350–1467^\circ$C [42] it was set to the bound values. The corresponding melting enthalpies $\Delta H_m = 175$ and 190 kJ/mol were also taken from [42] assuming that the formulae unit (2MgO · 2Al$_2$O$_3$ · 5SiO$_2$; $M = 585$ g/mol) building unit. ΔH_m for diopside is ≈ 138 kJ/mol (formulae unit; $M = 216$ g/mol) [38].

For C_{b}-cordierite, normal growth does not fit the experimental data, except at the lowest temperatures (n, dotted line in Fig. 7). This is confirmed by Jackson’s treatment of the interface [45,46], which expects that materials with high entropy of melting, such as diopside ($\Delta S_m = \Delta H_m/RT_m \approx 10$) and cordierite ($\Delta S_m = \Delta H_m/RT_m \approx 13$), have smooth crystal/melt interfaces.
Using the screw dislocation model, the experimental data above 1000 °C can be fitted when \(T = 1350 \) °C is assumed. The results (not shown) for higher \(T_m \) are much worse. For \(T < 1000 \) °C the deviation from the experimental points is up to one order of magnitude. If \(T_m = 1467 \) °C is used, the 2D surface nucleated growth model also fits the experimental points fairly well (2D, dashed-dotted line in Fig. 7). But in the low temperature range (\(T < 900 \) °C) a deviation of about one order of magnitude occurs. The best fit is obtained using the combined mechanism. It is possible to fit the smooth shoulder in \(u(T) \) at 970 °C and its temperature dependence below 900 °C with \(\sigma = 280 \text{ mJ/m}^2 \) (see Table 2) and \(T_m = 1350 \) °C (c, solid line in Fig. 7). This fit required a high value of \(C_{2D} \) compensating the low value of the exponent in Eq. (5a) at the temperature range of the observed shoulder in \(u(T) \). Only this way, \(f_{2D} \gg f_s \) and a pronounced shoulder could be attained.

For diopside, all three growth models are more or less applicable when independently fitted. Thus, the normal growth model (n, dotted line in Fig. 8) fits the experimental points up to 1150 °C. However, we had to assume a small steric factor \(c = 0.04 \) notwithstanding the used values of \(c = 1 \) for all other models. Using \(c = 1 \) for normal growth results in a more than one order of magnitude higher \(u(T) \). With the screw dislocation model (s, dashed line in Fig. 8) as well as with the 2D model (2D, dashed-dotted line in Fig. 8), the experimental data can be well fitted within the whole temperature range. However, for the latter model this fitting is only possible assuming a very low \(\sigma \) (see Table 2). Fitting in terms of the combined mechanism was also possible requiring a high value of \(C_{2D} \), too (not shown).

5. Discussion

5.1. Crystal growth mechanism

Two methods of assessment of the crystal growth mechanism were applied here for \(\mu \)-cordierite: direct fitting of crystal growth and estimation of crystal/melt interfacial energy. With direct fitting, both the 2D-surface nucleation and the screw dislocation growth model could be fitted with sufficient accuracy. These assessment uncertainties may arise from the unknown value of \(T_m \) or from the experimental difficulties to measure the very large

Table 2

<table>
<thead>
<tr>
<th>System</th>
<th>Method</th>
<th>Mechanism</th>
<th>(c)</th>
<th>(T_m) (°C)</th>
<th>(\sigma_1)</th>
<th>(\sigma_2)</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diopside</td>
<td>Uhmann</td>
<td>2D</td>
<td>1</td>
<td>1467</td>
<td>70</td>
<td>372</td>
<td>0.12</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1467</td>
<td>122</td>
<td>644</td>
<td>0.2</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1350</td>
<td>34</td>
<td>204</td>
<td>0.06</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1350</td>
<td>58</td>
<td>353</td>
<td>0.10</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct fitting</td>
<td>2D</td>
<td>3</td>
<td>1467</td>
<td>140</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screw</td>
<td>3</td>
<td>1350</td>
<td>224</td>
<td></td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combined</td>
<td>3</td>
<td>1350</td>
<td>280</td>
<td></td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

Fig. 6. Estimation of the liquid/crystal interfacial energy, \(\sigma \), for diopside. \(\Delta G(T) \) calculated by Eq. (7b). \(\sigma \) was obtained from slope 1 and slope 2. The dashed line (slope 2) indicates the uncertainty of slope determination. Results are summarized in Table 2.

Fig. 7. Best fits of crystal growth rate data for \(\mu \)-cordierite: Normal growth: n, dotted line; screw dislocation: s, dashed line; 2D surface nucleated growth: 2D, dashed-dotted line, combined mechanism: c, solid line. Calculation parameters are summarized in Table 3. Experimental points: see Fig. 2(a).
Unfortunately, the content of the page seems to be a mix of text and diagrams, which makes it difficult to extract a coherent plain text representation. The text appears to discuss crystal growth mechanisms, specifically focusing on the growth of cordierite and diopside. It mentions the importance of undercooling and the use of different models to describe the growth mechanisms, including the 2D surface nucleation and spiral growth models.

The text also refers to Table 2, which likely contains data related to crystal growth rates for different materials. There is a mention of Table 2 showing a large scatter, indicating that the data may not be entirely reliable.

A more defined situation is observed for diopside. For small undercoolings, Kirkpatrick indicated the spiral growth mechanism. Confirmingly, very small values of roughen the spiral steps (combined mechanism). are obtained assuming that 2D-surface nucleation additionally rect fitting (Fig. 7), the 2D-mechanism best fits the respective shoulder and below yields reasonable cicate systems, which usually varies between 0.4 and 0.6.

5.3. Crystal growth rate shoulder

Most intriguing, a smooth shoulder appears at \(\approx 970 \) °C for \(\mu \)-cordierite and may be also present for diopside (but it is quite small and could be hidden by the data scatter). The best fitting of

\[
\sigma \text{ and } \alpha \text{ summarized in Table 2 show a large scatter. This scatter may arise from the uncertain validity of adopted assumptions concerning the growth mechanism, the small or large crystal case, the constancy of } C_b \text{, the applicability of Eq. (7b), and the uncertain melting point of } \mu \text{-cordierite. Other small effects arise from the uncertain molar mass of the building unit, which is simply set to the formula unit. At least for cordierite, which formula unit contains five silica and four alumina tetrahedra, this is questionable [42] (please note that altering } M \text{ will affect } d \text{, } \Delta H_m \text{ and } \Delta G \).
\]

All these uncertainties indicates that one should not trust any of the such-wise obtained results for } \sigma \text{ and that the application of any method for estimating } \sigma \text{, particularly from } u(T) \text{ data restricted to narrow temperature ranges, could be misleading.}

The mean jump distance, \(\lambda \), is frequently assumed to equal } d \text{. For } \mu \text{-cordierite, it was not possible to directly fit the experimental points with this assumption. Only for a significantly smaller } \lambda \text{, an acceptable fitting was possible (see Table 3). Thus, we used the jump distance } \lambda \text{ as a free fitting parameter in Eq. (3a), whereas } d \text{ was calculated with Eq. (2a). To perform a good fitting, even at low temperatures, near } T_m \text{, a somewhat lower } \lambda \text{ than the oxygen ion radius } (\lambda = 0.13 \text{ nm}) \text{ was necessary. For diopside, good fitting with } \lambda = \lambda \text{ was possible (see Fig. 8 and Table 4). But as we discussed for the estimation of } \sigma \text{, the fitted } \lambda \text{ should only give an order of magnitude for the jump distance or the size of the jumping molecules.}

5.2. Fitted parameters

The full and reduced energy parameters, } \sigma \text{ and } \alpha \text{, respectively obtained from the two methods used are summarized in Table 2. Umhann's method assuming the 2D surface nucleation mechanism yields values which are too small for small undercooling (slope 1) if compared with well-known values from Classical Nucleation Theory for measurable homogeneous nucleation in silicate systems, which usually vary between 0.4 and 0.6. Slope 2 (large undercooling), which refers to temperatures near the respective shoulder and below yields reasonable } \alpha \text{ values for both systems. } \alpha \text{ values obtained from direct fitting for } \mu \text{-cordierite are plausible for the screw dislocation and the combined mechanism. This finding also holds for diopside.}

\[
\begin{align*}
\sigma \text{ and } \alpha \text{ summarized in Table 2 show a large scatter. This scatter may arise from the uncertain validity of adopted assumptions concerning the growth mechanism, the small or large crystal case, the constancy of } C_b \text{, the applicability of Eq. (7b), and the uncertain melting point of } \mu \text{-cordierite. Other small effects arise from the uncertain molar mass of the building unit, which is simply set to the formula unit. At least for cordierite, which formula unit contains five silica and four alumina tetrahedra, this is questionable [42] (please note that altering } M \text{ will affect } d \text{, } \Delta H_m \text{ and } \Delta G \).
\end{align*}
\]

All these uncertainties indicates that one should not trust any of the such-wise obtained results for } \sigma \text{ and that the application of any method for estimating } \sigma \text{, particularly from } u(T) \text{ data restricted to narrow temperature ranges, could be misleading.}

The mean jump distance, \(\lambda \), is frequently assumed to equal } d \text{. For } \mu \text{-cordierite, it was not possible to directly fit the experimental points with this assumption. Only for a significantly smaller } \lambda \text{, an acceptable fitting was possible (see Table 3). Thus, we used the jump distance } \lambda \text{ as a free fitting parameter in Eq. (3a), whereas } d \text{ was calculated with Eq. (2a). To perform a good fitting, even at low temperatures, near } T_m \text{, a somewhat lower } \lambda \text{ than the oxygen ion radius } (\lambda = 0.13 \text{ nm}) \text{ was necessary. For diopside, good fitting with } \lambda = \lambda \text{ was possible (see Fig. 8 and Table 4). But as we discussed for the estimation of } \sigma \text{, the fitted } \lambda \text{ should only give an order of magnitude for the jump distance or the size of the jumping molecules.}

5.3. Crystal growth rate shoulder

Most intriguing, a smooth shoulder appears at \(\approx 970 \) °C for \(\mu \text{-cordierite and may be also present for diopside (but it is quite small and could be hidden by the data scatter). The best fitting of
u(T) including this shoulder was possible assuming that the melt/crystal interface, growing from screw dislocation defects, is additionally toughened by superimposed 2D surface nucleation, particularly at large undercoolings (Fig. 4). The possibility that different crystal growth mechanisms operate in a wide temperature range has been discussed by Burgner et al. [13] in their study of LS2 glass. A possible change from screw dislocation to surface nucleated growth with increasing undercooling was also addressed by Gutzow et al. [1] for systems with intermediate ΔS/R. The value of this parameter is large for the present glasses if the building unit is equated to the formulae unit. Computer simulations showed that, depending on the crystallographic orientation, atomic roughness can increase significantly with increasing ΔG/RT, i.e., with increasing undercooling [47].

Thus, this supposition might be feasible, although no clear evidence can be claimed from the present study. Instead, several possibilities must be considered to account for this phenomenon, which may also affect the assessed growth mechanism and fitted parameters.

5.4. Model applicability

5.4.1. Chemical composition
The applicability of the applied standard model is restricted to interface-controlled isochemoal crystal growth, which we assume to be valid for both glasses studied here. And, indeed, the linearity of the crystal size versus time curves, expected for such case, was verified for -cordierite between 920 and 1080 °C [15], and for diopsid from 750 up to 850 °C [14]. The attained good fitting of u(T) in the wide temperature range covered here also indicates the applicability of standard growth models.

Nevertheless, small effects like the observed shoulder in u(T) might be affected by temporary changes of the chemical composition of growing crystals with annealing time or temperature. Such compositional changes have been experimentally verified by Fokin et al. [48] and Roskosz et al. [49] in other silicate systems. Considering diopside, however, preliminary results of quantitative EDX analysis by SEM (crystallographic layer heat treated at 890 °C for 16 h) showed no difference between the glass and crystal phase compositions [50]. Up to now, no such analysis was performed for cordierite. X-ray powder diffraction studies [51] have shown that the position of (101) peak of the X-ray powder diffraction interface-controlled isochemical crystal growth, which we assume to be valid for both glasses studied here. And, indeed, the linearity of standard growth models.

According to Eqs. (5a) and (5c), however, this ratio should be only negligible for the measured crystal growth rate data of -cordierite. Thus, we recalculated curve 2D in Fig. 7 (large crystal case) for the small crystal case (not shown in Fig. 7). The curves did not differ by more than ≈ 2.

5.4.3. Crystal surface roughness
u(T) will increase by a transition from the small to the large crystal case if crystal growth is governed by 2D surface nucleation (Eq. (5a)). This might explain the change of slopes in Figs. 5 and 6. For -cordierite (Fig. 5), the ratio between slope 2 and slope 1 is 37 and 27 for Tm = 1350 °C and Tm = 1467 °C, respectively. For diopside (Fig. 6), this ratio is 106 (solid line) or 31 (dashed line). According to Eqs. (5a) and (5c), however, this ratio should be only 3. Therefore, this enormous change of slope is not due to a transition from small to large crystal growth. A transition from the small to the large crystal case might also explain the shoulder in u(T) of -cordierite. Thus, we recalculated curve 2D in Fig. 7 (large crystal case) for the small crystal case (not shown in Fig. 7). The curves did not differ by more than ≈ 2.

5.4.4. Decoupling
Another possible explanation for the shoulder might be attributed to a possible breakdown of the Stokes–Einstein/Eyring equation (see Eq. (3b)). For instance, a recent study [55] demonstrates that below the glass transition temperature atomic motion through a metallic glass involves single-atom hopping, whereas motion above Tg is more collective. Similar findings have been reported for some organic liquids. For such fragile systems a substantial change in the diffusion mechanism seems to occur at temperatures about 1.2Tg, and this temperature has been denominated decoupling temperature Td. But, this phenomenon has not yet been firmly demonstrated for oxide glasses. Here, we should stress that the weak shoulder in Fig. 7 occurs at ≈1.2Tg, where decoupling is expected. However, the inflection is too faint and uncertain to really demonstrate decoupling. For instance, one expects that for real decoupling – such as those reported in Ref. [55] below Tg, the Stokes–Einstein/Eyring equation would not describe the diffusion coefficients any longer, but here they do. In other words, decoupling leads to a permanent change in slope and not only to a kink in the crystal growth rate curves.

5.4.5. Temperature at the liquid/crystal interface
A further precondition for the accuracy of the crystal growth analysis is that the temperature of liquid/crystal interface equals that of the bulk specimen. Herron and Bergeron [56] suggested and successfully tested empirical equations to estimate the liquid/crystal interface temperature Tl, for temperatures near the maximum crystal growth rate umax and at u < 0.67 u max[25]. In order to check the related potential influence on u(T), we used Herron and Bergeron’s equation,

$$\Delta T_l = 17.12 (u_{\text{max}} \Delta H_m)^{0.466},$$

where u max is in (cm/s) and ΔHm in (cal/cm3), to correct our u(T) data with respect to temperature. For cordierite and diopside these corrections are at the most 5 and 50 °C, respectively, in the range of maximum growth rate. Hence, they could, in principle, exert a significant effect on the kinetic analysis of diopside. Such corrected u(T) data were used to repeat the data analysis in Fig. 6, but calculations performed with and without them demonstrate that the main conclusions would not change.
6. Conclusions

We have analyzed crystal growth rate data of µ-cordierite and diopside crystals in their corresponding isochemical glass forming melts in a wide temperature range, from about T_m to T_g, with u(T) varying by about 9 orders of magnitude. The maximum of u(T) is reached at about 1250 °C in both systems. A weak shoulder in u(T) is observed at 970 °C (~1.2T_g) for µ-cordierite.

For diopside, the experimental u(T) can be equally fit by the 2D surface nucleation growth mechanism and by the screw dislocation growth mechanism. However, the screw dislocation model yields parameters of more significant physical meaning.

For µ-cordierite, these two models also describe the experiment growth rates. However, the best fitting of u(T), including the observed shoulder, was attained for a combined mechanism assuming that the melt/crystal interface, growing from screw dislocations, is additionally roughened by superimposed 2D surface nucleation at large undercoolings, starting at temperatures around the observed shoulder. Thus, this supposition might be feasible, although no clear evidence can be claimed from the present study.

Taken in toto, the experimental data could be fit within the whole temperature range by the standard dislocation growth model. The good fittings indicate that viscosity can be used to assess the transport mechanism that determines crystal growth in these systems, from the melting point to about T_g, down to about T_m, with no sign of a breakdown of the Stokes–Einstein/Eyring equation. Similar findings were recently reported for pure silica glass [57].

Acknowledgments

MLFN would like to acknowledge DAAD (Deutscher Akademischer Austauschdienst) and the Brazilian agencies CAPES for financial support during his stay at BAM, and FAPESP for his postdoctoral fellowship (Grant 04/10703-0). EDZ thanks the Brazilian agencies Fapesp (Grant 07/08179-9) and CNPq for continuous support during his internship at BAM and Mark Ediger for a critical review of the manuscript.

References

[18] Ch. Hanay, Diploma Friedrich-Schiller University, 1992 (in German).
[37] V. M. Fokin, N. S. Yuritsyn, personal communication.