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A B S T R A C T   

In this Letter, we delve into theoretical considerations that address the absence of a thermodynamic spinodal in 
supercooled liquids, which has been incorrectly identified in some simulation studies. Additionally, we discuss 
the localization of the kinetic pseudo-spinodal, which has also been estimated in computational simulations.   

1. Thermodynamic spinodal 

Upon surpassing the equilibrium coexistence curve, condensed 
matter enters a range of metastable states in which it can exist for a 
certain time before eventually transitioning to a stable phase. As the 
deviation from the equilibrium coexistence increases metastable states 
can become unstable. The boundary curve distinguishing the metastable 
region from the unstable states is known as the thermodynamic spino
dal. The spinodal is determined based on the principles of thermody
namic stability [1,2], and represents states in which these conditions are 
no longer met. For one-component systems, this spinodal represents the 
locus of critical points where the second derivative of Gibbs’ free energy 
with respect to volume becomes zero. At the spinodal, a metastable 
system becomes thermodynamically unstable, undergoing phase sepa
ration triggered by infinitesimal perturbations in the state parameters. 

A supercooled liquid (SCL) represents a unique metastable phase. 
One pressing question is whether further cooling of a liquid below its 
melting temperature could approach a spinodal. The scenario in this 
context differs considerably from other processes, such as liquid–gas 
phase transitions or segregation processes in solid and liquid solutions. 
Two primary distinctions can be noted [3]: (i) upon cooling, a liquid can 
turn into a non-equilibrium glassy state instead of a crystal; (ii) the 
liquid–solid transition is a disorder–order process and is accompanied by 
symmetry breaking. Based on this symmetry concept, Landau deduced 
the absence of an equilibrium critical point on the liquid–solid coexis
tence curve. This deduction implies the absence of a thermodynamic 
spinodal in a SCL [4,5]. Later on, the absence of a spinodal in one- 

component melts was established by Skripov and coauthors through a 
thorough analysis of experimental data in Ref. [6] and further confirmed 
in Refs. [7,8]. To date, within the extensive amount of experimental data 
available, the crystallization of liquids has not exhibited features that 
suggest a potential equivalence between these two states. This contrasts 
with common observations at critical points and the spinodal in liq
uid–gas transitions or in segregation processes in solutions. 

When applying the Classical Nucleation Theory (CNT) in conjunction 
with Gibbs’ thermodynamic theory of heterogeneous systems [1,2], the 
assertion of the absence of a spinodal has been expanded to multi- 
component liquids, as detailed in Ref. [9]. According to the CNT [10], 
the steady-state nucleation rate, J, i.e., the average number of viable 
nuclei formed per unit time and volume, can be expressed via the work 
of critical cluster formation, Wc, as 

J = J0exp
(

−
Wc

kBT

)

; Wc =
1
3

σAc (1)  

Here J0 is the kinetic pre-factor determined by the kinetics of aggrega
tion [11], kB is the Boltzmann constant, T is the absolute temperature, σ 
is the solid–liquid surface tension, and Ac is the surface area of the 
critical cluster. Assuming a spherical shape of the critical nucleus, the 
latter is given as Ac = 4πR2

с , where Rc is the critical radius, which is 
determined by the ratio between σ and the thermodynamic driving force 
for crystallization, Δg, as Rc = 2σ/Δg. 

The temperature dependence of driving force is given by [12,13] 
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Δg(T, pm) = −

∫ T

Tm

Δs(T, pm)dT

=
Δhm(Tm − T)

Tm
−

∫ Tm

T
ΔcpdT′ +T

∫ Tm

T

Δcp

T′ dT′ (2)  

where Tm is the melting or liquidus temperature, pm is the melting 
pressure corresponding to Tm, Δs is the difference of the entropy per unit 
volume between the SCL and the crystal phases, Δhm is the heat of 
melting, Δcp is the difference between the liquid and crystal heat ca
pacities at constant pressure. 

It has been theoretically demonstrated [14] that the Δg(T, pm)

dependence, Eq. (2), exhibits a maximum at a temperature where Δs 
becomes zero. This temperature is commonly denoted as the Kauzmann 
temperature, TK. Below TK, the driving force may even reach zero at a 
finite temperature, provided γm ≡ Δcp(Tm,pm)/Δs(Tm,pm) > 2. However, 
in practice, such thermodynamic states at deep supercoolings, T < TK, 
are unattainable for SCLs [15,16,17]. This is because they tend to either 
vitrify or crystallize at higher temperatures. The experimental values of 
Δg are normally constrained within two approximations, which assume 
Δcp = 0 (γm = 0) and Δcp = constant(γm = 2) in Eq. (2) [12,14,18]. 
Employing these limiting cases, Eq. (2) can be written as [14,19] 

Δg(T, pm) = Δhm

(

1 −
T
Tm

)

(3)  

and 

Δg(T, pm) = Δhm

(

1 −
T
Tm

)(
T
Tm

)

(4)  

respectively. The potential range of values for Δg, as defined by Eqs. (3) 
and (4), is illustrated in Fig. 1. Summarizing the previous discussion, the 
driving force remains finite across the entire supercooling range, 
0 < T/Tm < 1, reaching its maximum at the Kauzmann temperature. 

The general Stefan-Skapski-Turnbull equation for the surface tension 

was derived in Ref. [20] and is formulated for a one-component system 
as: 

σ = χυ1/3

{

Tβ
(
sβ − sα

)
+

3
Rc

[

sα

(
∂σ
∂sα

)

ρβ ,sβ

+ ρα

(
∂σ
∂ρα

)

ρβ ,sβ

]}

(5)  

where χ is the numeric parameter, υ is the molar volume divided by 
Avogadro’s number, ρ is the number density, and the subscripts α and β 
refer to the crystal and liquid phases, respectively. Based on the theo
retical analysis presented in Ref. [20], as supercooling increases at a 
constant pressure, the surface tension decreases but remains finite down 
to zero temperature. 

At the spinodal points, the metastable and stable phases become 
indistinguishable. Thus, both the thermodynamic driving force and 
surface tension must reach zero simultaneously. A review of Eqs. (2)–(5) 
reveals that the conditions Δg(T, pm) = 0 and σ(T, pm) = 0 cannot be 
satisfied at T > 0 [14,20]. Therefore, from a theoretical standpoint, 
there is no thermodynamic spinodal for a SCL. 

The thermodynamic spinodal can also be described as states in which 
no barriers exist for a phase transition, i.e., Wc = 0 [2,21]. A procedure 
for estimating the SCL spinodal through the Wc(T) = 0 condition was 
employed, for example, in Refs. [22,23]. However, the inadequacy of 
this approach has been already highlighted by Kelton and Greer ([10], 
page 107) in their discussion of the behavior model computations for 
Wc, where it converges to zero. They observed, “The decrease of Wc to 
zero is a failing of this particular model, since there is no point at which the 
liquid becomes unstable relative to the solid.” They further noted, “None
theless, it does indicate that a properly constructed density-functional model 
could describe the transition from a nucleation-and-growth mechanism to a 
spinodal transformation, which the CNT cannot do.” Some potentially 
feasible scenarios in this direction, such as examining the influence of 
supersaturation on the critical cluster’s bulk state parameters or crys
tallization through the selective segregation of the liquid are explored in 
Ref. [24]. However, the works [22,23] did not consider these aspects, 
consequently leading to the absence of the thermodynamic spinodal in 
their findings. It is also worth noting that processes featuring zero 
thermodynamic barriers may occur in supercooled melts, for example, 
phase separation [25,26]. 

In a recent study conducted by Li et al. [23], the thermodynamic 
spinodal was estimated to be located at T = 0.45⋅Tm in SCL Al by 
(artificially) linearly extrapolating the Wc(T) dependence to zero 
(Fig. 1), where values of Wc were indirectly derived from the J(T) slope, 
Eq. (1). In Fig. 1 we also show the possible approximation of the values 
of Wc within the CNT framework, using the equation, Wc =

16πσ3/3(Δg)2, with Δg = Δhm(1 − T/Tm) and σ = σ(Tm, pm)⋅T/Tm 
derived from Eqs. (2) and (5), and assuming Δcp = 0 the same premise as 
in the work [23]. It should be also noted that the obtained values of the 
nucleation barrier are consistently smaller than 3⋅kBT, making them 
comparable to thermal fluctuation energy, 1⋅kBT, and thus questioning 
the applicability of the CNT formalism in this scenario [12,27]. 

2. Kinetic spinodal 

In addition to the fundamental thermodynamic spinodal, there is also 
the concept of a kinetic pseudo-spinodal introduced for SCLs. In his 
seminal paper [15], Kauzmann noted that the entropy of certain meta
stable liquids decreases rapidly upon supercooling and could even 
match the entropy of the corresponding crystal at temperature TK. To 
resolve this paradoxical situation, Kauzmann proposed the concept of a 
pseudo-spinodal localized at the temperature Tps above TK, at which 
crystallization should inevitably occur, thereby preventing further 
persistence of the SCL. This crystallization arises from the reduction of 
the free energy barrier for crystal nucleation down to the barrier level 
associated with atomic motions controlling structural relaxation. 
Importantly, Kauzmann made a clear distinction between this pseudo- 

Fig. 1. Reduced work of formation of the critical crystal nucleus, Wc/kBT, 
derived from the J(T) data (1) and linearly approximated (3) in Ref. [23]. The 
smooth line (2) is the CNT approximation, Wc/kBT = 16πσ3/3kT(Δg)2 =

const(T/Tm)
2
(1 − T/Tm)

− 2, assuming Δcp = 0. The region of thermal fluctua
tions, E ≤ 1⋅kBT, is highlighted in yellow. Inset: Potential range of values for the 
thermodynamic driving force, Δg(T, pm), as defined by Eqs. (3) and (4). 
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spinodal state and a true thermodynamic spinodal. The kinetic spinodal 
in several SCLs has been recently discussed in Ref. [17]. 

In that same study conducted by Li et al. [23], the pseudo-spinodal 
point, Tps = 0.51⋅Tm, was defined as the temperature at which the 
crystal nucleation and structural relaxation times match, i.e., τN(Tps) =

τR(Tps). The nucleation time, τN, was determined as the birth time of the 
first critical nucleus, whereas the relaxation time, τR, was derived from 
the self-intermediate scattering function. However, this approach lacks a 
unique definition of the pseudo-spinodal because τN is notably influ
enced by the volume of the metastable liquid, τN = 1/JV. Consequently, 
the derived value for Tps = 0.51⋅Tm is valid exclusively for the specific 
volume corresponding to N = 108,000 atoms in the system explored 
within the research. Here, we estimate it for the smallest possible vol
ume, considering V = 1 nm3 for this purpose [28]. Accordingly, we 
deduce that Tps = 0.49⋅Tm. 

In general, nucleation times include both τN and the time-lag, τlag, 
associated with the establishment of steady-state nucleation regime at a 
given temperature [29]. This time-lag can be expressed as [30] 

τlag =
ω
2

(
kBT
σd2

0

)(
R2

c

DτR

)

τR (6)  

where d0 is the characteristic size of the crystallizing liquid. The nu
merical factor ω varies within the range 1 ≤ ω ≤ 4, contingent upon the 
methodology applied to derive Eq. (6). Above the decoupling tempera
ture, Td, (Td ≈ 1.2⋅Tg) the product DτR becomes temperature- 
independent since the Stokes-Einstein-Eyring relation is valid. 
Conversely, this relation does not hold below Td. Numerical evaluations 
accounting for the decoupling of diffusion and relaxation [31] show that 
the condition proposed by Kauzmann for the pseudo-spinodal curve is 
generally satisfied near or below the glass transition temperature, Tg, i. 
e., Tps ≈ Tg. In simulations, this relationship was recently identified for 
germanium in Ref. [28]. Note that within this same temperature region, 
the homogeneous steady-state crystal nucleation rates in inorganic glass 
formers reach their maximum [32], TJmax ≈ Tg, thus resulting in 
Tps ≈ TJmax. The peak in J(T, pm) was observed in Ref. [23], coinciding 
with the one previously obtained for the 2NN-MEAM model of Al at 
TJmax = 475 K ≈ 0.51⋅Tm [33]. This finding supports the Tps ≈ TJmax 

relation for Al and indirectly validates the correctness of Tps = 0.51⋅Tm 

as determined by Li et al. [23]. 
The Tps ≈ Tg relationship can generally be confirmed. When crystals 

nucleate in viscous liquids, the effective stress parameter, ε, representing 
the elastic energy per particle in the crystal phase, is determined by the 
intricate interplay between stress evolution arising from crystallite for
mation and concurrent stress relaxation during this process. When 
considering relaxation as proceeding per Maxwell’s law, the effective 
value of ε for a critical-sized crystallite as shown in Ref. [12] and the 
papers cited therein can be expressed by 

ε(nc)

ε0
≅

τR

τlag

[

1 − exp
(

−
τlag

τR

)]

(7)  

where ε0 refers to a Hookean solid. Thus, according to Eq. (7), the in
fluence of elastic stresses on crystal nucleation in glass-forming liquids is 
assessed by the ratio τR/τlag. For temperatures considerably above Tg, 
elastic stresses are expected to have minor significance, while for glasses 
they must have a similar order of magnitude as observed in Hookean 
solids. Consequently, as the temperature decreases, the τR/τlag ratio 
should shift from near-zero values around Tm to very large values below 
Tg to satisfy Eq. (7). As a result, the condition for the occurrence of the 
pseudo-spinodal, as formulated by Kauzmann, is met close to the Tg: 
0.5 < Tg < 0.8 for inorganic glass-forming melts [34] and 0.3 < Tg <

0.6 for metallic glass-forming alloys [35,36]. Upon further cooling, the 
nucleation rate is reduced also because of the interplay between relax
ation and crystal nucleation processes [3,24,31,37]. Thus, knowledge of 

the τR/τlag is pivotal for understanding crystal nucleation, albeit in a 
context distinct from Kauzmann’s supposition. 

3. Conclusion 

This work has outlined theoretical considerations that address the 
absence of a thermodynamic spinodal in SCLs and has discussed the 
localization of the kinetic spinodal. In summary, this Letter serves to 
draw the attention of interested readers to future research endeavors 
regarding the intricate characteristics of SCLs, which include the com
plex dynamics of liquid relaxation and crystal nucleation at deep 
supercoolings. 
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