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A B S T R A C T   

Structural relaxation and crystallization are crucial phenomena in physics, chemistry, and materials science. A 
thorough study of their relationship could clarify some critical open questions. In this article, we focus on 
thermodynamic and kinetic properties: the Kauzmann temperature, TK (where the excess entropy tends to zero), 
the kinetic spinodal temperature, Tks (where the relaxation and crystal nucleation curves cross), and the glass 
transition temperature, Tg . We used zinc selenide (ZnSe) as a model system for which a reliable potential is 
available and obtained the self-diffusion coefficient, viscosity, critical nucleus birth times, relaxation times, 
entropy, Tg , Tks and TK by molecular dynamics (MD) simulations. We confirmed that the Stokes-Einstein equation 
breaks down in the moderate supercooled regime, impacting the relationships between the dynamic and ther-
modynamic properties. Two relaxation times were determined in the supercooled liquid (SCL) state: i) using the 
shear viscosity and the Maxwell equation, τη, and ii) from the self-intermediate scattering function and the 
Kohlrausch equation, τR. We found that in the whole supercooling regime, τη ≪ τR confirming two recent 
experimental studies for other substances. The nucleus birth times, τN , were also obtained for two system sizes. 
The τR(T) and τN(T) curves indeed crossover, confirming the existence of a kinetic spinodal temperature for this 
system. Hence, for temperatures somewhat above and below the Tks, crystallization of the SCL could be affected 
by structural relaxation. Finally, our results demonstrate that if the Kauzmann temperature existed, it would be 
well below the Tks. Hence, crystal nucleation intervenes on the cooling path, and SCL ZnSe cannot reach this 
temperature, thus averting the paradoxical entropic situation. These findings shed light on some central prob-
lems related to supercooled liquids.   

1. Introduction 

Due to its substantial scientific and technological relevance, under-
standing and describing the relaxation and crystallization mechanisms 
and kinetics of supercooled liquids (SCL) are relevant, fascinating and 
challenging. Structural relaxation is a key phenomenon that plays a 
significant role in vitrification and crystallization. Moreover, if a liquid 
is deeply supercooled without vitrifying or crystallizing, a particularly 
intriguing possibility is that it could reach the isentropic temperature, 
TK, predicted by Kauzmann, at which the difference between the entropy 
of the SCL and its isochemical crystal (excess entropy) vanishes. Hence, 
for a temperature somewhat lower than TK, the excess entropy would 
become negative and eventually reach zero above T = 0K, which would 
contradict the Third Law of thermodynamics. This conundrum is known 
as the Kauzmann paradox [1]. In this article, we are not advocating the 

existence of TK; instead, we will test whether this temperature could be 
reached by an SCL before it crystallizes on the cooling path. Premature 
crystallization would avoid the paradoxical situation. 

To properly understand the atomistic dynamics of a SCL, one must 
measure, theoretically calculate or simulate at least two characteristic 
times: one is related to the intrinsic atomic diffusivity that leads to the 
structural rearrangement of the supercooled liquid [2–5] and is called 
relaxation time, τR. The other characteristic time is the average period 
necessary to spontaneously form the first crystalline critical nucleus, the 
so-called nucleation time τN. According to the Classical Nucleation 
Theory, τN is controlled by the diffusion coefficient, D, and the ther-
modynamic barrier for crystallization, ΔG*, 

τN = (A/D)exp
(

ΔG*

kBT

)

(1) 
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where A is the kinetic pre-factor [2] and kB is Boltzmanns constant. 
The race between these two characteristic times determines whether 

a supercooled liquid would relax before the birth of the first crystal 
nucleus or vice- versa [3,6]. When cooling down a liquid to any tem-
perature between the equilibrium melting point, Tm, and the glass 
transition temperature, Tg, τN decreases, reaching a minimum (where 
the nucleation rate is maximum), and then increases for deeper super-
coolings. This non-monotonic τN(T) relationship is explained by the 
classical nucleation/growth theory [2,7,8]. Crystallization occurs if 
τN < τR, otherwise the supercooled liquid can relax and even vitrify; i.e., 
become a glass. The temperature at which τN becomes equal to τR, is 
called the kinetic spinodal temperature, Tks. One should note that the 
crossover temperature, Tks, is not the classical thermodynamic spinodal, 
where the thermodynamic barrier for the liquid/crystal transformation 
vanishes. Due to its inherent complexity, the relationship between these 
two characteristic times has been scarcely investigated. To the best of 
our knowledge, this relation has only been studied experimentally for a 
few substances: the oxide glass-forming systems Li2O.2B2O3 and 
Li2O.2SiO2 [6], and by computer simulations in pressurized SiO2 [9], 
supercooled Ni [10], Cu [11], Cu5Zr [12], Kob-Anderson (KA) binary 
Lennard-Jones mixture [13], CuxZr1-x for a range of compositions from 
x = 0.15 to 0.645 [13], and more recently in BaS [14]. Simulation 
studies of Ni and BaS above the glass transition temperature, and an 
experimental study above and below the Tg for Li2O.2SiO2 and 
Li2O.2B2O3, have indicated that Tks is significantly lower than Tg. Hence 
crystallization of the SCL (above Tg) occurs after structural relaxation for 
these four substances. In the case of Cu and Cu5Zr, Tks is above Tg for the 
specific cooling rate studied; hence these supercooled liquids crystal 
nucleation starts before completion of the structural relaxation process. 
In the case of the supercooled liquid of a toy model glass former (Kob- 
Andersen model) [13] and for the model metallic glass former copper 
zirconium (CuxZr1-x), x = 0.15 to 0.645 [13], these two characteristic 
times were evaluated above the glass transition temperature, however, 
Tks was not reported. The common feature of all these materials is that 
crystallization takes place on the cooling path. 

The microscopic mechanism of crystallization in above mentioned 
materials were related to dynamic heterogeneity in the SCLs, as 
mentioned in refs. [9–12], or to a series of discrete avalanche-like events 
characterized by regions composed of one species that are larger than 
the critical nucleus of that species. Nucleation in these regions is fast, 
apparently requiring little atomic rearrangement, as reported for the KA 
binary Lennard-Jones, CuxZr1-x [13] and hard spheres at strong super-
cooling [15,16]. It should be stressed that, among all these studies, only 
in refs. [6,9] were the Kauzmann temperatures estimated and compared 
with the respective kinetic spinodal temperatures for three materials. 
Both studies have shown that Tks is higher than TK. Hence, for these three 
substances, crystallization intervenes on the cooling path and the par-
adoxical temperature TK cannot be reached by the SCL. 

These previous studies were quite revealing; however, some crucial 
open questions still remain: i) do all supercooled liquids and glasses 
ultimately nucleate (crystallize) in the deeply supercooled regime? To 
the best of our knowledge, only in the above mentioned seven materials 
(Li2O.2B2O3, Li2O.2SiO2, pressurized SiO2, Ni, Cu, Cu5Zr, and BaS) the 
existence of the spinodal temperature has been investigated, and only 
three of them (Li2O.2B2O3, Li2O.2SiO2, pressurized SiO2) also estimated 
the Kauzmann temperatures. Hence further studies are needed to reach a 
universal description for the ultimate fate of SCLs. ii) Is Tks > TK for all 
SCLs? By thoroughly testing another substance, we attempt to build up 
more knowledge on this particular issue. iii) A third related problem is 
the following: is it factual that the equilibrium shear viscosity controls 
the intrinsic structural relaxation process in SCL? This question is also 
extremely relevant because it is often assumed that structural relaxation 
can be calculated by the liquid viscosity (η = equilibrium shear viscos-
ity) via the Maxwell equation, 

τη = η/G∞ (2)  

where G∞ is the infinite frequency shear modulus. In fact, in many experi-
mental studies, e.g., [6], the equilibrium shear viscosity is used to calculate 
the relaxation times. Because τN and τR are (possibly) controlled by atomic 
self-diffusion and viscous flow, understanding the possible relation between 
these properties is also crucial. Later, we will show that two recent experi-
mental works indicated that Eq. (2) is not a good predictor for structural 
relaxation for two different materials; hence, it would be relevant to test this 
concept with other substances and techniques, e.g., MD simulation. 

For temperatures far above the glass transition temperature, homo-
geneous liquids normally obey the Stokes-Einstein equation (SE), 

Dη
T

= constant. (3) 

The possible correlation between the existence of the kinetic spinodal 
temperature and the validity of the SE relation at deep supercoolings was 
investigated in [17]. It was argued that if the SE relation is assumed for the 
transport term of Eq. (1), the Tks would not exist and the two-time scales 
would never cross. The SE breakdown is correlated with the dynamically 
heterogeneous nature of supercooled liquids and, by extension, with the 
fragility of most glass formers [12,18–21]. Another current question is the 
following: is it this breakdown that makes it possible for τN and τR to 
become comparable at sufficiently low temperatures? 

In this study, we simulate and compare τN, τR and τη to investigate 
the possible existence of Tks for another system, zinc selenide (ZnSe), 
and also compare Tks with TK. Finally, we aim to clarify another related 
open question, i.e., whether the structural relaxation kinetics can be 
described by the equilibrium shear viscosity. The substance chosen as a 
model for this study is ZnSe because we developed a reliable potential 
[22], which allows reliable determination of relaxation times, and have 
also shown that, in a relatively wide supercooling range, ZnSe sponta-
neously crystallizes in MD simulation time scales [23]. Hence, it also 
provides this opportunity to evaluate τN directly. In the next section, we 
explain the simulation details and the results obtained for the diffusion 
coefficient, D, viscosity, η, the average relaxation time, τR, nucleation 
time, τN, and excess entropy, Sexc , as a function of temperature. We then 
use these data and their extrapolated curves to find out the kinetic spi-
nodal and Kauzmann temperatures and compare them. Then, in Section 
3 we discuss the main results, and finally summarize them in the Con-
clusions section. 

2. Simulation details and results 

Our results are based on the molecular dynamics simulations of ZnSe 
with two different system sizes containing 17, 576 and 32,768 Zn and Se 
atoms. Details about the potential used and simulation parameters are 
available in Refs. [22,23]. All simulations were performed by the LAMMPS 
package [24] in NpT and NVT ensembles. The timestep was 1.0fs. The Nosé- 
Hoover thermostat and barostat were used to control the temperature and 
pressure. Periodic boundary conditions were applied in all directions. 

The melting temperature was obtained through the two-phase 
coexistence method, resulting in Tm = 1388K [23]. Fig. 1 shows the 
behavior of the atomic volume (V/N) as a function of temperature 
during heating/cooling process of the two system sizes for the cooling 
rate 1K/ps. The red and green lines relate to systems containing 17,576 
and 32,768 atoms, respectively. From this plot, one can estimate the 
glass transition temperature, Tg, of each system size by the intersection 
of linear fits to high and low temperature atomic volume data. Tg de-
pends on the cooling rate applied. In Fig. 1Tg is approximately 
800 ± 20K. Doubling the size of the system just decreases it by 3%. 

We also quantified the dynamical properties of the supercooled 
liquid by evaluating D, η, τR and τN for several temperatures from 1600K 
down to 900K. The average nucleation time, τN, was calculated at three 
temperatures T = 1000,950,900K because for the specific cooling rate 
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used here, crystallization occurs spontaneously at T < 1050K, and can 
be measured on our computational time scale. 

2.1. The diffusivity 

One of the simplest quantities for describing the atomic dynamics is 
the translational diffusion coefficient, which can be obtained by a linear 
fit to a long-time regime of the mean-square displacements (MSD =
<r2(t)>) and using the Einstein relation <r2(t)> = 6Dt. Fig. 2 presents 
the Arrhenius-type plot for calculated D(T) values (from the slope of the 
simulated MSD plots at a long time), versus temperature in the range of 
1000K < T < 1600K for both Zn and Se atoms. A fit to the data by the 
Arrhenius expression, D = D0exp(− EA

KBT) gives the activation free energies 
EA = 0.60eV for Zn and EA = 0.73eV for Se. The pre-exponential factors 
are D0 = 53.9A◦ 2

/ps for Zn and D0 = 108.54A◦ 2
/ps for Se. Therefore, Zn 

is faster than Se. However, the Arrhenius expression cannot fit the 
temperature dependence of DZn and DSe over the entire temperature 
range. This difference between the diffusivities of Zn and Se could cause 
dynamic heterogeneity, which is the reason for the breakdown of the SE 
relation (we will discuss this issue in the next section) and leads the SCL 
towards crystallization or vitrification. At T = 1050 K and 1000 K, some 
nucleation events were observed on the cooling path, and the diffusivity 

is smaller than predicted by extrapolation using the Arrhenius expres-
sion fitted at high temperature data. The average values of DZn and DSe 
are used to analyze the validity of the SE relation. Doubling the system 
size in the simulation did not change the diffusivity values. 

2.2. Viscosity 

To obtain the shear viscosity, we used the Green-Kubo (GK) relation 
via the stress tensor correlation function; 

η =
V

NKBT

∫ ∞

0
〈pij(0)pij(t)〉dt, (4)  

where pij is the off-diagonal element of the pressure tensor, pxy, pxz, pyz. V 
is the volume and N is the number of particles in the system. The shear 
viscosity is an average over all three off-diagonal terms η =

1
3

(
pxy+pxz +pyz,

)
. 

Fig. 3 shows a semi-log plot of viscosity as a function of inverse tem-
perature in the range 1050K < T < 1800K (simulated data) and 625K <

T < 1600K (extrapolated values). Each data point is averaged over five 
independent equilibrated systems. The error bars refer to the standard 
deviation. Calculation of the shear viscosity using the GK relation needs 
convergence of the integral of Eq. (4). This convergence is often an issue in 
supercooled liquids because the pressure-pressure correlation functions 
decay very slowly towards zero, especially at deep supercoolings. Hence, 
in this article we only report the viscosity values at temperatures for which 
convergence occurred (see Appendix for details). 

Increasing the simulated system size did not change the viscosity 
significantly. We tested this possibility with the following box sizes: Lx =

Ly = Lz = 73.3A◦ and Lx = Ly = Lz = 90.3A◦ , which refer to systems 
comprising 17,576 and 32, 768 atoms, respectively. 

Several models describe the viscosity behavior. The most popular are 
the Vogel-Fulcher-Tamman (VFT) [25], the Avramov-Milchev (AM) 
[26] and the Mauro–Yue–Ellison–Gupta–Allan (MYEGA) equation [27]. 
The three models are described as follows: 

MYEGA : log10(η) = log10(η∞)+
A
T

exp
(

B
T

)

, (5)  

VFT : log10(η) = log10(η∞)+
A

T − B
, (6)  

AM : log10η(T) = log10η∞ +

(
A
T

)B

, (7) 

Fig. 1. Atomic volume of ZnSe as a function of the temperature during heating/ 
cooling. The red and green lines relate to systems containing 17,576 and 32,
768 atoms, respectively. Dashed lines are linear fits for high and low temper-
ature atomic volume data. The vertical line marks Tg , the intersection between 
the linear fits. 

Fig. 2. Arrhenius plot of the simulated translational diffusion coefficient, D(T), 
in ZnSe obtained from the MSD. Dashed lines are fits to an Arrhe-
nius expression. 

Fig. 3. Shear viscosity, η, as a function of inverse temperature. The simulated 
viscosity data were fitted and extrapolated to T < Tg with the VFT equation 
(dashed red line), MYEGA equation (dashed blue line) and AM equation 
(dashed green line). 
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where A, B and η∞ are adjustable parameters resulting from fitting to 
viscosity data. The differences among these three models were compared 
in Ref. [27]. It was shown that the VFT breaks down at low temperatures 
and over-predicts viscosity values [28,29], whereas the AM yields a 
divergence of configurational entropy in the high-temperature limit. 

Among these, the MYEGA viscosity equation shows an improved 
description of the viscosity-temperature relationship based on the tem-
perature dependence of configuration entropy both at high- and low- 
temperature regions. Here, we used the three models to describe the 
behavior of viscosity and the fits were shown in Fig. 3 with dashed lines 
and the values of fitting parameters are presented in Table 1. Although 
all three models describe the behavior of viscosity at high temperatures 
well, in the deep supercooling regime the extrapolated values of vis-
cosity significantly differ. The differences were discussed in Ref. [30]. It 
was related to a systematic error of the AM model, and to the unphysical 
divergence of viscosity at low temperatures in the VFT model. Among 
them, the MYEGA model exhibits no such systematic error when per-
forming both at the high- and low-temperature limits, which leads to the 
improved accuracy in performing low-temperature extrapolations [27]. 
Hence, we only use the MYEGA model in the next sections to describe 
the temperature dependence of relaxation times. 

Fig. 4 shows the translational diffusion coefficient, D, calculated 
from the MSD versus T/η. It shows that the SE relation starts to break 
down soon below the melting point and does not hold in the supercooled 
regime probed here. The decoupling of the self-diffusion coefficient from 
viscosity is a manifestation of the heterogeneity in the dynamics of 
fragile liquids upon supercooling [18–21]. Indeed, when these liquids 
are cooled down towards Tg, local relaxation occurs at substantially 
different rates at different places within the liquid, i.e., the dynamics 
becomes spatially heterogeneous. This fragile nature of supercooled 
liquid ZnSe is also demonstrated by the breakdown in the temperature 
dependence of diffusivity. In the next section, we discuss the relaxation 
time in the supercooling regime. 

2.3. Relaxation time 

Structural relaxation refers to the liquid structure rearrangement 
until reaching the SCL state, which is metastable against the crystalline 
state. Direct microscopic observation of structural relaxation can be 
carried out by studying the behavior of the dynamic structure factor at 
its first maximum, or by its Fourier transformation, the intermediate 
scattering function, Fs(q, t). The self-part of the intermediate scattering 
function (ISF) is defined as 

Fs(q, t) = N − 1
α

∑Nα

j=1
〈exp(i q→∙

[

r→α
j (t) − r→α

j (0)
])

〉, (8)  

where the wave-vector, q, corresponds to the first sharp diffraction peak 

position, in our case, q = 1.9Å
− 1

, Nα is the total number of Zn and Se 
particles in the simulation box, and r→α

j (t) are the atomic positions of all j 
particles of species α. The ISF for Zn and Se atoms was calculated using 
the MD trajectories in the supercooled region at several temperatures 
both in the liquid and supercooled liquid regions for 900K < T < 1600K. 
Fig. 5 (a) and (b) show the time dependency of the ISF for Zn and Se 
atoms, respectively. By decreasing the temperature, a plateau appears 
which is related to the time needed by particles to break out of the cage 

created by neighboring particles. The Kohlrausch-Willian-Watts (KWW) 
function normally provides a good fit to the long-time behavior of the 
ISF [31] and is defined as 

Fs(q, t) = Fs(q)exp[− (
t

τα
)

β
] (9)  

where τα is the structural relaxation time, β is the stretched exponent; 

Table 1 
Fitting parameters of the simulated viscosity curve as a function of inverse 
temperature, Fig. 3.  

Parameters log10η∞  A  B  

MYEGA  0.001   0.02   7063.34  
VFT  − 0.002   2.66   911.47  
AM  0.001   369.01   4.66   

Fig. 4. Translational diffusion coefficient, D(T), versus T/η. The red dashed 
line is a fit according to the SE relation, (Eq. (3)). The SE relation breaks down 
in the supercooled regime probed here. 

Fig. 5. Time dependence of the self-part of the intermediate-scattering function 
for (a) Zn, and (b) Se. 
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they are fitting parameters. Fig. 6 shows the calculated structural 
relaxation time as a function of temperature for both Zn and Se. For 
better statistics, five independent samples have been simulated at each 
temperature and the average of the structural relaxation times < τα,Zn >

and < τα,Se > were calculated. The error bars are standard deviation. At 
high temperatures, τα changes almost linearly with temperature, 
whereas at lower temperatures it increases drastically and deviates from 
the linear behavior. The inset of Fig. 6 shows the temperature depen-
dence of the stretched exponent, β. At higher temperatures for homo-
geneous liquids that are free of dynamic heterogeneity it approaches 
one. By decreasing the temperature, β decreases. 

The average relaxation time, τR(T), is related to the average struc-
tural relaxation time as follows [32,33]: 

τR(T) =
τα(T)
β(T)

Γ
(

1
β(T)

)

, (10)  

where Γ is the gamma function, τα(T) = (< τα,Zn > + < τα,Se >)/2 and 
β(T) = (< βZn > + < βSe >)/2. 

Fig. 7 shows the average relaxation time, τR, versus T/D. A fit to the 
data point according to the SE relation, DτR

T = constant, shows that, by 
decreasing the temperature, the slope of τR as a function of inverse D 
changed significantly. This decoupling of the self-diffusion coefficient 
from the average relaxation times has also been found in computer 
simulations of other SCLs, such as hard-sphere [34], binary hard-sphere 
mixtures [35], a binary Lennard-Jones mixture [36], H2O [37], SiO2 
[38], Ge [39] and Al50Ni20 [40]. 

2.4. Crystal nucleation time 

We computed the birth times, τN, i.e., the average time needed for the 
first critical crystal nucleus to appear in the supercooled liquid at three 
temperatures T = 1000,950,900K for two system sizes containing 17,
576 and 32,768 atoms. The computations were based on detecting solid- 
like particles by calculating the Steinhardt bond-order parameter 
[41,42], Sij =

∑m=+6
m=− 6q6m(i).q*

6m(j), where q6m(i) = 1
Nb(i)

∑Nb(i)
j=1 Ylm( r→ij) is 

the Steinhardt parameter, Ylm( r→ij) are the spherical harmonics, Nb(i) is 
the number of nearest neighbors of atom i, r→ij is the vector connecting 
atom i with its neighbors j. This procedure was carried out for 15 sam-
ples, and the reported birth times in Fig. 9 refers to the average over 
these 15 measurements. For each system size, the independent samples 

were allowed to evolve for 1ns and every 1000timesteps = 1ps, the 
atomic configurations were saved. At the end of the simulation, all 
configurations were analyzed and the number of solid-like atoms 
calculated via the q6 order parameter. Fig. 8 shows the time evolution of 
the number of solid-like atoms for some selected samples at T = 950K. 
Table 2 shows the average τN and calculated steady-state nucleation rate 
Jss(T) = 1/τNV at three temperatures for two system sizes. By increasing 
the system size at a given temperature, τN decreases in a way that the 
steady-state nucleation rates are almost the same for two different sys-
tem sizes. As Jss is a characteristic property of the system, one can 
calculate the average birth times for different system sizes, via τN =

1/(JssV). We calculated τN for a system of 3.7 × 1010 particles, which 
corresponds to a volume of 1μm3 (which approaches an experimental 
sample size). The temperature dependence of τN for all three system 
sizes are shown in Fig. 9. The birth times can be readily extrapolated to 
lower temperatures. We have determined the temperature dependence 
of the steady-state homogeneous nucleation rates, Jss = 1/τNV, using the 
nucleation rates that were fitted with the Classical Nucleation Theory 
(CNT) expression: 

Fig. 6. Temperature dependence of the average structural relaxation time 
calculated from the self-intermediate scattering function via the KWW expres-
sion (Eq. (9)) for Zn and Se. Inset: Temperature dependence of the stretched 
exponent, β, calculated using the KWW expression. 

Fig. 7. Average relaxation time versus T/D for the temperature range 
1000K < T < 1600K. The line is a fit to the SE relation, DτR

T = constant. At high 
temperatures, close or above Tm, the SE relation is obeyed, however by 
decreasing the temperature in the SCL state the SE relation is no longer valid. 

Fig. 8. Time evolution of the number, N, of solid-like atoms determined by 
calculating the q6 order parameter at T = 950K for two system sizes. Each line 
corresponds to a specific sample. To obtain the average birth time, τN , the onset 
times (when the number of atoms in the nucleus started to increase) were 
averaged over fifteen independent initial configurations. 
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Jss
̅̅̅̅
T

√

D
= Aexp

(

−
B

TΔG*2

)

, (11)  

where A and B are fitting parameters, which are related to the pre-factor, 
the nucleus shape and the interfacial free energy, respectively. There-
fore, by inverting Jss(T), the birth times (τN = 1/(JssV)) could be 
extrapolated to lower temperatures. The extrapolation results are shown 
in Fig. 9 by blue, green and orange dashed lines. 

We also calculated the relaxation times through the viscosity, τη, via Eq. 
(2), using G∞ = 30GPa of the crystal obtained from MD simulation. We as-
sume that the infinite frequency shear modulus of the SCL is similar to that of 
the crystal. The results are shown in Fig. 9, where the temperature depen-
dence of τN is compared to τR and τη. For shallow supercoolings, τN is longer 
than τR, indicating that relaxation occurs before nucleation. By decreasing 
the temperature, the gap between τN and τR decreases. For the largest 
simulated system size, N = 32, 768, the two curves cross at Tks =

890 ± 10K. To find the kinetic spinodal temperature for other system sizes, 
we fitted τR with the MYEGA equation (Eq. (5)). The red arrows labeled 1, 2 
and 3 show the crossover points, hence the predicted Tks increases when the 
system size is increased. For all three systems, Tks is above the glass transition 
temperature demonstrating that this particular system “crystalizes” (at least 
one critical nucleus is formed) before reaching the true glassy state. Hence, 
the measured Tg refers to the residual supercooled liquid, which already 
contains several critical crystalline nuclei formed on the cooling path. We 
estimated the critical cooling rate required to avoid nucleation by the rela-
tion [8]: 

ΔT
Δt

=
Tm− Tnose

τnose
(12) 

τnose is time related to the Tnose (the minimum point in the time-
–temperature transformation curve). For systems containing 17,576 and 
32,768 atoms, the critical cooling rates are 5.5 and 18.5 K/ps, respec-
tively. Therefore, the cooling rate used in this study was 1K/ps, which is 
lower than the two estimated critical cooling rates, hence we witnessed 
spontaneous nucleation already in the cooling procedure. 

We found that τη is as much as an order of magnitude smaller than τR 
and converges to τN less rapidly than τN and τR, which is in accordance 
with the results of MD simulations of BaS [14] and two recent experi-
mental works that have reached the same conclusion for other sub-
stances, a commercial glass and lead metasilicate glass [32,43], 
respectively. Hence, τη likely reflects the stress relaxation times, and 
only gives a lower bound for the structural relaxation times. 

2.5. Kauzmann temperature 

The Kauzmann temperature can be determined by computing the 
excess entropy, which is defined as the difference between the total 
entropy of the supercooled liquid and its isochemical crystal phase: 

Sexc(T) =
Δhm

Tm
+

∫ T

Tm

Δcp(T ’)

T ’ dT ’ +
∑

i

Hc,i

Tc,i
(13) 

The temperature at which the excess entropy vanishes is the Kauz-
mann temperature. Here Δhm is the enthalpy difference between liquid 
and crystal at the melting point. Δcp is the difference between the spe-
cific heat of the supercooled liquid and crystal at constant pressure. The 
third term is the enthalpy of any polymorphic crystal phase trans-
formation that might occur in the supercooling range. In the current 
system with N = 17,576 and 32, 768 atoms, no polymorphic crystalline 
phase was observed in the temperature range at which the Sexc was 
calculated (T > 1050K). From the slope of the time evolution of the 
respective enthalpies, we calculated the temperature dependency of the 
specific heat of the supercooled liquid and crystal. By inserting the 
cp,liq(T) and cp,crystal(T) into Eq. (13) and evaluating the integral, we 
calculated the excess entropy, which is shown in Fig. 10 by circles. 
Finally, by extrapolating the excess entropy to lower temperatures, it 
vanishes at TK = 630 ± 15K. This uncertainty in TK was estimated by 
considering typical error of more or less 2% in Tm, Δhm and Δcp.

Hence, the estimated Kauzmann temperature is well below the kinetic 
spinodal temperature. For the oxide glass-forming systems Li2O.2B2O3 
and Li2O.2SiO2 [6], and in pressurized SiO2 [9], the estimated Kauzmann 
temperatures are also lower than Tks. Thus, our results for ZnSe corrobo-
rate those earlier studies for other substances and indicate that crystalli-
zation is indeed the SCĹLs ultimate fate. Thus, the paradoxical 
temperature cannot be reached, at least for these four substances. 

It is worth mentioning that, in doing the above estimate, we are not 

Table 2 
Values of τN and Jss(T) at three temperatures for two system sizes.   

N τN(ps) Jss(ps− 1A◦ − 3
)

1000(K) 17576  803.8  2.5× 10− 9  

32768  740  1.5× 10− 9  

950(K) 17576  224.7  0.9× 10− 8  

32768  168.3  0.7× 10− 8  

900(K) 17576  161.2  1.3× 10− 8  

32768  78.8  1.4× 10− 8   

Fig. 9. Temperature dependence of nucleation birth times, τN , and average 
relaxation times estimated by fitting the intermediate scattering function, τR, 
and via viscosity, τη. The respective fittings and extrapolations of τR(T) and 
τη(T) with the MYEGA equation (Eq. (5)) and extrapolations of τN(T) with the 
CNT (Eq. (11)) are also shown. The vertical lines depict the glass transition, Tg , 
melting temperature, Tm, and the Kauzmann temperature, TK. The red arrows 
demonstrate the crossover points of τN and τR (Tks) for three system sizes. 

Fig. 10. Excess entropy of ZnSe as a function of temperature. The red dashed 
line displays the extrapolation of Sexc according to Eq. (13) down to TK . 
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defending that the Kauzmann temperature is a physically meaningful 
quantity. It is likely an artifact of an extrapolation procedure that yields 
an apparent vanishing of excess entropy. Still, in reality, the excess en-
tropy likely does not vanish on a longer time scale since other config-
urations can be explored compared to short simulations time scales [44]. 
The results of our simulations and calculations show that even if TK 
could theoretically exist, it would never be reached because the SCL 
would crystallize at a higher temperature, Tks > TK. 

3. Conclusions 

In this work, we carried out extensive MD simulations of kinetic and 
thermodynamic properties of supercooled ZnSe, used as a model material. 
We found that the self-diffusion coefficient and viscosity of ZnSe are very 
similar in the liquid state and shallow supercoolings, but their proportion-
ality breaks down at intermediate supercoolings. This disruption signifi-
cantly affects the relationships between the properties of interest to this 
work. 

The relaxation times obtained from the self-intermediate scattering 
function are longer than the values calculated from viscosity using the 
Maxwell relation. Hence, the relaxation times that are frequently 
calculated in this way underpredict the structural relaxation kinetics. 
This result confirms recent (2020–2021) MD simulations of BaS and 
experimental results for two other substances. 

The kinetic spinodal temperature of ZnSe is significantly higher than 
the Kauzmann temperature. Hence, this supercooled liquid crystallizes 
before reaching TK, thus averting the entropy catastrophe predicted by 
Kauzmann. Therefore, our findings corroborate the hypothesis of some 
(but not all) authors that the alleged paradox does not exist. 

Finally, in the temperature range somewhat above and below the 
kinetic spinodal, crystal nucleation dynamics in the supercooled liquid 
should be affected by structural relaxation. This interference of relaxa-
tion on nucleation is not addressed by the current nucleation models but 

should be taken into account to analyze nucleation rates properly. This 
result corroborates recent theoretical predictions and experimental re-
sults for Li2O.2SiO2 [45,46] and 2Na2O.1CaO.3SiO2 [47]. 

These findings shed light on crucial problems referring to super-
cooled liquids. 
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Appendix 

Pressure autocorrelation function 

The accuracy of the Green-Kubo formulation for computing shear viscosity from equilibrium Molecular Dynamics simulations depends on the quality of the 
potential used to model the material, the simulation time, the number of particles, and how the correlations are accumulated. The Fig. A1 bellow shows the 
autocorrelation of the pxy component of pressure tensor, < pxy(0)pxy(t) > versus temperature for N = 17,576 particles for the temperature range 
1000K < T < 1600K. As the temperature decreases a longer time is needed for the autocorrelation of pxy to approach zero. At T = 1000K, at which spon-
taneous crystallization occurs on the cooling path, this function does not converge to zero within the time frame available for our simulations. 

Fig. A1. Autocorrelation of the pxy component of pressure tensor, < pxy(0)pxy(t) > versus temperature for N = 17,576 particles for the temperature 
range 1000K < T < 1600K. 
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