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Modern technologies demand the development of new glasses with unusual properties. Most of the previous
developments occurred by slow, expensive trial-and-error approaches, which have produced a considerable
amount of data over the past 100 years. By finding patterns in such types of data, Machine Learning (ML)
algorithms can extract useful knowledge, providing important insights into composition-property maps. A
key step in glass composition design is to identify their physical-chemical properties, such as the glass transi-
tion temperature, Tg. In this paper, we investigate how different ML algorithms can be used to predict the Tg
of glasses based on their chemical composition. For such, we used a dataset of 43,240 oxide glass composi-
tions, each one with its assigned Tg. Besides, to assess the predictive performance obtained by ML algorithms,
we investigated the possible gains by tuning the hyperparameters of these algorithms. The results show that
the best ML algorithm for predicting Tg is the Random Forest (RF). One of the main challenges in this task is
the prediction of extreme Tg values. To do this, we assessed the predictive performance of the investigated
ML algorithms in three Tg intervals. For extreme Tg values ( � 450 K and � 1150 K), the top-performing algo-
rithm was the k-Nearest Neighbours, closely followed by RF. The induced RF model predicted extreme values
of Tg with a Relative Deviation (RD) of 3.5% for glasses with high Tg ( � 1150 K), and RD of 7.5% for glasses
with very low Tg ( � 450 K). Finally, we propose a new visual approach to explain what our RF model learned,
highlighting the importance of each chemical element to obtain glasses with extreme Tg. This study can be
easily expanded to predict other composition�property combinations and can advantageously replace
empirical approaches for developing novel glasses with relevant properties and applications.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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vier Ltd. All rights reserved.
1. Introduction

Glasses are non-equilibrium, non-crystalline materials that spon-
taneously relax to the supercooled liquid state [1]. Unlike crystals,
glasses do not need to satisfy rigid stoichiometry rules and can be
thought of as continuous solutions of chemical elements. There is a
huge number of possible compositions for forming glassy materials.
Indeed, 80 chemical elements combined in discrete quantities of 1
mol% would produce 1052 possible glass compositions [2]. Neverthe-
less, the number of inorganic glasses reported is only around 106,
which implies an enormous window of opportunity for the discovery
of novel glass-forming compositions.

Developing new multicomponent glasses—with relevant properties
and applications—has been an empirical endeavor mainly guided by
educated guesses via the expensive and time-consuming trial-and-error
approach. Using computational tools such as ab initio and classical
molecular dynamics simulation is limited to simple compositions, typi-
cally with less than 5 elements. The current predictive approaches to aid
the thoughtful synthesis of newmulticomponent glasses consists of pre-
dicting their properties by resorting to empirical models with a small
confidence range.

In this scenario, Machine Learning (ML) has demonstrated a con-
siderable capability to address complex problems in materials scien-
ces by leveraging existing available knowledge [3,4]. The existing
materials data provide a fertile environment for ML applications,
which can be used to harvest and analyze the embedded knowledge
providing a valuable source of information for further research and
technological development.

To move towards the use of ML algorithms to obtain new glass
compositions, the development of models for predicting glass prop-
erties with higher accuracy is essential. At the same time, to access
the embedded knowledge in materials data, the decision-making
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process needs to be understood of behind the predictions performed.
Towards this aim, there is a category of algorithms that can, in princi-
ple, induce interpretable models. By explaining how they arrive at
their decisions, explainable models can provide useful insights, aiding
in the discovery of new and relevant knowledge.

In order to develop new glasses, knowledge of the glass transition
temperature (Tg) is fundamental. Tg can be defined (in short) as the
temperature that a glassy material transitions from a hard and brittle
substance to a viscous, soft state. Its importance is related, for
instance, to the relief of residual stresses and the glass stability
against crystallization [5], as well as mechanical stability [6]. The Tg
strongly depends on the chemical composition. Chemical elements
and combinations that generate glasses of very low Tg are being con-
tinually searched to reduce manufacturing costs, whereas element
combinations that lead to very high Tg glasses are used to develop
glasses for refractory applications.

A previous study [7] reported a successful application of a Multi-
layer Perceptron (MLP) artificial neural network (ANN) to predict the
Tg of multicomponent oxide glasses. The model was trained using
more than 50000 glass compositions containing over 46 chemical
elements. The estimated accuracy of the inferred model was less
than § 6% error over 90% of the times. Fortunately, the prediction
error did not depend on the number of elements in the glass compo-
sition. However, for glasses with very high Tg ( � 1150 K), or very
low Tg ( � 450 K), the prediction uncertainty was significantly larger.

Although MLP neural networks have been successfully used in sev-
eral Materials Science predictive tasks [8�16], other ML algorithms
could provide better estimations due to their different learning biases
[17,18]. Additionally, it is well known that the predictive performance
of an ML algorithm depends on the values assigned to its hyperpara-
meters. Choosing a good set of values is not an easy task. For this reason,
many software packages with implementations of the ML algorithms
suggest default values for their hyperparameters. Even though default
values can, in most (but not all) cases, lead to a reasonable performance,
the results are usually better if a proper set of values is selected, which
is known as hyperparameter tuning [19].

Another essential aspect to be considered when using ML algo-
rithms is how straightforward the interpretation of the induced mod-
els is. Models obtained by some popular ML algorithms, such as the
ANN and Support Vector Machines (SVM) [20], are often difficult to
interpret. For this reason, these models have been called black-box
models [21]. Therefore, there is an active movement towards the
induction of explainable models [21,22]. This movement argues that
to trust a model induced by a ML algorithm, the model must be easily
understood and interpreted by humans. Explainable models can, in
principle, provide useful insights regarding the strategy used in the
decision-making process.

Considering the previously discussed issues, in this work, we aim
to dwell on the following questions:

� Q.1: How is the predictive performance of the induced models
affected by using tuned instead of default hyperparameter values
for the ML algorithms?

� Q.2: Is there any statistically significant difference in the predic-
tive performance of models induced by different algorithms for
the whole Tg dataset?

� Q.3: Is it possible to induce, for our dataset, explainable models
with predictive power similar to the predictive power of non-
explainable, frequently used models?

� Q.4: Is there any statistically significant difference in the predic-
tive performance of models induced by different ML algorithms
for extreme values of Tg?

To address Q.1, Q.2, we used six distinct ML algorithms in the task
of predicting Tg values. The algorithms used are the following: MLP
[23], Support Vector Regression (SVR) [20], Categorical Boosting
(CatBoost) [24], k-Nearest Neighbors (k-NN) [25], RF [26], and Classi-
fication and Regression Tree (CART) [27]. Moreover, all ML algorithm
hyperparameters were tuned and their accuracy was compared with
each other. To answer Q.4, we analyzed the performance of the ML
algorithms in three ranges of Tg values: low (Tg � 450 K), intermedi-
ate (450 K < Tg < 1150 K), and high (Tg � 1150 K) temperatures.
Finally, we addressed the Q.3 by analyzing three ML algorithms that
are able to induce interpretable models: RF, CART and CatBoost.

This paper starts with a brief review of related works in Section 2.
Next, we discuss the dataset collection and the methodology adopted
for the ML experiments (Section 3). Afterwards, we present and dis-
cuss the main results, followed by the interpretation of the explain-
able induced models (Section 4). Finally, in Section 5, we present our
final considerations concerning the findings from this research.
2. Related Work

ML has been used in the field of Materials Science and Engineering
since the late nineties [9] and has attracted great attention over the
last decade. ML algorithms have been used to predict properties of
polymers, metallic alloys, and ceramics [8,10�12,14,15,28�35].

In the field of oxide glasses, to the best of our knowledge, the first
work to use ANNs was that of Brauer et al. [13], which focused on the
prediction of the chemical durability of glasses containing P2O3, CaO,
MgO, Na2O, and TiO2. About ten years later, Krishnan and co-authors
[36] explored the same property considering other ML algorithms, such
as RF and SVM. In their analysis, they discussed a physics-informed ML
approach, where the training was done separately, depending on the
pH of the solution. This approach improved the predictive power of the
algorithms, as it could account for the V-shape dependence of chemical
durability on the acidity of the solution.

ANNs were also successfully used to predict the glass transition
temperature [7] and to evaluate of the quality of tempered glass [37].
When applied to predict the Young modulus for a small dataset of sili-
cate glasses (up to 105 examples), MLP neural networks were outper-
formed by Gaussian Process Regression [38]. When applied to predict
the Young modulus obtained by molecular dynamics simulations [39],
ANNs offered the highest accuracy when compared with polynomial
regression, LASSO, and RF. Although it is not a “glass property”, the
liquidus temperature is essential for the glass making process and it
was also focused on studies using ANNs by Dreyfus et al. [10] and
Mauro et al. [16].

In related works reporting the application of ML algorithms to
glasses, only a small number of algorithms were investigated, and
usually without hyperparameter tuning. Moreover, scarce or no effort
was made to interpret explainable models. In order to address these
gaps, in this work we selected six ML algorithms, including not only
those that provide non-explainable solutions, such as the models
explored in related works [8�16,40], but also ML algorithms that
enable model interpretation. Additionally, we performed hyperpara-
meter tuning and investigated the predictive accuracy of the induced
models in three Tg regions (low, intermediate, and high). This last
investigation was carried out to test how the induced models behave
in predicting the extreme values of Tg, for which we expect a low pre-
dictive accuracy [7].
3. Experimental methodology

This section describes the methodology used in the ML experi-
ments. Firstly, we present the original dataset used in the experi-
ments and pre-processing techniques we applied to the dataset to
improve its use. Next, we describe the strategies used for ML algo-
rithm tuning and validation of ML experiments. It is worth mention-
ing that in the ML literature, an experiment typically consists of the
following steps: the application of an ML algorithm to a training set
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(inducing a predictive model), followed by the evaluation of the pre-
dictive performance of the induced model on a test set.

3.1. Dataset

The Tg dataset used in this work was collected from scientific
journals, books, and patents obtained from the SciGlass database
version 7.12 [41]. We limited our query to oxide glasses. For such,
we considered compositions with at least 30% of the atomic frac-
tion of oxygen. We excluded all compositions containing chemical
elements that could change the balance of oxygen, such as sulfur,
hydrogen, carbon, fluorine, chlorine, nitrogen, bromine, iodine,
and the noble metals (platinum and gold, which are typically pres-
ent in small amounts in metallic form).

The collected raw dataset has approximately 51000 glass compo-
sitions, each composition with 2 to 32 different chemical elements
from a total of 65 chemical elements. A close analysis of the raw data-
set revealed that many entries refer to the same composition. There-
fore, we removed and replaced these duplicated instances by a single
entry with their median Tg value. A discussion about the effect of
replacing the duplicate data by their median or keeping them is pro-
vided in Sections 1 and 7 of the supplementary material. The final
number of unique glass compositions is 43238. In this cleaned data-
set, Tg values range from 342 K to 1495 K, and they seem to follow a
normal distribution with mean 774 K. Figure 1 shows a histogram of
the Tg values in the raw dataset (with duplicated compositions) and
the cleaned dataset (without duplicated compositions).

From these 43238 glass compositions, more than 20000 are materials
containing silicon and boron. These components are among the most
commonly used glass forming elements. Some chemical elements appear
in very fewmaterials, as is the case of Hg, Rh, Ru, and Pd, which appear in
1, 5, 9, and 10 compositions, respectively. A histogram of the number of
compositions containing each chemical element for the final dataset
(except oxygen, which is present in every glass) is shown in Figure 2.

Additionally, in the supplementary material, we present histo-
grams of the total number of compositions and the Tg distribution of
some duplicated glasses (Figures S1 and S2, respectively). Only the
clean dataset was used in the experiments. Besides, a comparison
with the results obtained using the original dataset is shown and dis-
cussed in the supplementary material.

3.2. Machine Learning Algorithms

In this section, we briefly present the six ML algorithms used in
our experiments: MLP [23], SVR [20], CatBoost [24], k-NN [25], RF
Fig. 1. Histogram of Tg values. The red bars represent the raw dataset, and the green
bars represent the non-duplicated dataset. The dotted lines are Gaussian fits of the his-
tograms with R2 ¼ 0:981 and R2 ¼ 0:984 for the raw dataset and the non-duplicated
dataset, respectively.
[26,42], and CART [27]. We chose these algorithms due to their differ-
ent inductive biases [18] and because some of them induce explain-
able models. A detailed description of each of these algorithms can be
found in the supplementary material, in Section 2.

We grouped the algorithms into two categories: non-explainable
(black box) and explainable (white box). Here, explainable models
are those whose explanations about their decision-making process
can be easily extracted. Thus, models induced by MLP, SVM, and
k-NN are considered non-explainable, whereas those induced by RF,
CatBoost, and CART are considered explainable.

3.3. Evaluation measures

To compare the predictive performance obtained by the six
regression algorithms, we used four evaluation measures often used
in regression tasks: Relative Root Mean Square Error (RRMSE), Root
Mean Square Error (RMSE), Relative Deviation (RD), and Determina-
tion Coefficient (R2). These measures use as input the number of test
objects N, the expected outcomes y, the predicted values ŷ; and the
target mean value y. The measures are detailed in Section 3, in the
supplementary material.

3.4. Training and Evaluation Setup

We did not perform any feature engineering in our data set, i.e.,
we only considered the original features (chemical compositions) for
training the ML models. The target value used was Tg.

As previously mentioned, the predictive performance of a model
induced by an ML algorithm is usually affected by the values assigned
to its hyperparameters. Taking this aspect into consideration, in our
experiments, we compared the predictive performance of regression
models induced by the six ML algorithms with tuned and default
hyperparameters. To tune the hyperparameters of the algorithms, we
used the Random Search method [19] with a budget of 500 iterations
for each algorithm.

For such, we divided the dataset into training and test sets follow-
ing the k-fold cross-validation (k-CV) strategy, with k ¼ 10. This strat-
egy randomly divides the data into 10 folds of similar size, with 9
folds to train a regression model and 1 fold to test the trained model.
Thus, we have 10 different training and test sets, and the perfor-
mance of the regressor can be assessed by taking the average predic-
tive performance in the test folds.

For the hyperparameter tuning, we used the training data by
further separating it into 5-CV, with 4 folds used for training and
1 for validating the tuning process. For each training set, 500 dif-
ferent sets of hyperparameter values were evaluated. The hyper-
parameter sets were ranked accordingly to the median of their
predictive performance on the validation sets. We used RRMSE in
the tuning process because it compares the performance of the
evaluated predictor against a baseline (a model that always pre-
dicts the mean value in the evaluation data) [43]. Thus, it can
indicate whether tuning the hyperparameter values indeed pro-
duced a relevant improvement over a trivial predictor or not. For
more information concerning this metric, please refer to Section
3 in the supplementary material.

Finally, to access the predictive performance in the test set, we
selected the configuration with the best predictive performance
in the 5-CV. We used this configuration to induce a new model
with the whole training set and to evaluate its performance in
the test set. The final measure used to compare each algorithm,
and their best configuration was the average and the standard
deviation of the 10 test sets. It is worth noting that we did not
ever use the test set for hyperparameter tuning of the ML algo-
rithm or model selection.

We applied the non-parametric version of the Wilcoxon signed-
rank test [44] (using a ¼ 0:05) to confirm whether there was enough
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evidence to assume an algorithm performed better than the others,
and to check whether the tuning was adequate. We applied this
method to assess whether there is a statistically significant difference
between the mean performance of each pair of ML algorithms. If
we observe a significant difference, we then reapply the test to evalu-
ate whether the difference is positive or negative.

All experiments were performed using the Python program-
ming language with the sklearn, numpy, pandas, and catboost
packages. We compared models induced by tuned ML algorithms
with their default counterparts, i.e., the models induced by algo-
rithms using the default hyperparameter values suggested by the
used Python packages. In Section 4 of the Supplementary Mate-
rial, we describe the set and range of all hyperparameters used
for tuning the regression algorithms, as well as the best values
found.

4. Results and Discussion

This section presents the main results from our experiments and
our findings from these results. We present a comparison of the pre-
dictive performance obtained by the ML algorithms, tuning them,
and using their default hyperparameters. Furthermore, we evaluate
the performance of extreme Tg values. Afterwards, we interpret
explainable models in searching for new insights for glass scientists
and engineers. To address the questions introduced in Section 1, first,
we answer Q1 and Q2 (Subsection 4.1), then we proceed to Q4 (Sub-
section 4.2), and finally, we address Q3 (Subsection 4.3).
Table 1
Experimental results: tuned hyperparameters versus default hyperpa
the best results per measure are underlined. The upward arrows indi
default counterparts, the downward arrows indicate the opposite, an

Panel A: Non-expla

Measure MLP k-N

Default Tuned Default
RMSE 60 § 2 35§ 2 35§ 1
RRMSE 0.40 § 0.01 0.23 § 0.01 0.23 § 0.01
RD 5.9 § 0.2 3.0 § 0.2 2.75 § 0.06
R2 0.84 § 0.01 0.95 § 0.01 0.95 § 0.01

Panel B: Explaina

Measure CatBoost

Default Tuned Default
RMSE 43.9 § 0.8 36§ 1 44§ 1
RRMSE 0.30 § 0.01 0.24 § 0.01 0.29 § 0.01
RD 4.07 § 0.07 3.2 § 0.1 3.3 § 0.1
R2 0.92 § 0.01 0.94 § 0.01 0.92 § 0.01
4.1. Tuned hyperparameter values versus default hyperparameter values

Table 1 summarizes the main experimental results obtained by
the six ML algorithms with the default and tuned hyperparameter
values for the four previously mentioned measures (Section 3.3). The
results are divided into two groups: non-explainable models and
explainable models. For the RMSE, RRMSE, and RD measures, the
lower the value, the better, whereas for R2 it is the opposite. The best
results per regression algorithm are shown in bold, whereas the best
results per performance measure are underlined. In the following dis-
cussion, we mainly focus on the RRMSE and RD measures. RRMSE, as
pointed out in Section 3.4, assesses the obtained predictive gains
against a naive predictor. RD, by presenting a percentage of the pre-
diction errors, is of easy and straightforward interpretation.

Among all the evaluated algorithms, the worst case (SVR) predicts Tg
values with approximated 16% of RD for the models induced by algo-
rithms with default hyperparameters, and I3.8% for the models induced
by algorithms with tuned hyperparameters. On the other hand, the best
performer (RF) obtained RD rates of approximately 2.5% for the default
algorithms and 2.4% for the tuned algorithms. An RD of 3% means that,
for instance, a Tg prediction of 1000 K has in average 30 K of error. After
tuning, R2 also showed high values, more than 0.90 for all cases.

The RRMSE always presented values less than one, indicating that
even if we have not tuned the algorithms, the models generated would
be better than the mean baseline. This can be observed because
RRMSE ¼ 0 indicates a perfect fit while RRMSE ¼ 1 indicates the mean
of the test target value (a baseline that always predicts the mean).
rameters. The best results per regressor are shown in bold, and
cate that the tuned algorithms are statistically better than their
d the circles indicate ties.

inable models

N SVR

Tuned Default Tuned
33 § 1 147.4 § 0.9 44 § 2

0.22 § 0.01 0.98 § 0.01 0.29 § 0.01
2.5 § 0.1 16.0 § 0.1 3.8 § 0.3

0.95 § 0.01 0.41 § 0.01 0.92 § 0.01

ble models

CART RF

Tuned Default Tuned
43 § 2 32 § 1 30 § 1

0.29 § 0.01 0.21 § 0.01 0.20 § 0.01
3.4 § 0.1 2.49 § 0.06 2.38 § 0.06

0.92 § 0.01 0.96 § 0.01 0.96 § 0.01
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In the same table, we also show results for the pairedWilcoxon tests
comparing the standard version of the regressors with their tuned coun-
terparts. As can be seen, for all the cases except for CART, the tuned
algorithms performed statistically better than their default versions for
most of the performance measures (except for k-NN with RRMSE).
These observations answer our research questionQ.1.

The difference between tuned and non-tuned (default) ML
algorithms can be better visualized by comparing the spread of
the true Tg values versus the observed predictions. To this end,
we present scatter plots for each regression algorithm investi-
gated. In these figures, the x-axis represents the measured values
of Tg, whereas the y-axis represents the value predicted by the
model. We also added a straight line representing the identity
function, i.e., an ideal setting where the models predict the
Fig. 3. Prediction scattering for SVR (a) and R
expected responses precisely. Therefore, the farther the points
are from this line, the worse the predictions. Finally, we colored
the points according to the observed RD values per instance. We
show this comparison for the RF and SVR regressors in Figure 3.
For the other algorithms, we show the comparisons in Section 5
of the supplementary material.

The sole observation of the mean error values or prediction
scattering cannot give enough evidence that an algorithm indeed
performed statistically better than its competitors. We address
this question by analyzing the performance of the compared algo-
rithms considering the whole Tg distribution in the Wilcoxon test,
as shown in Table 2. As it can be easily seen, RF was statistically
better than all other algorithms. Next, k-NN was superior to all
other algorithms, except RF. Both CatBoost and MLP tied in this
F (b): default vs. tuned hyperparameters.



Table 2
Statistical test between tuned (line) and not tuned (column) algorithms
considering RRMSE. The upward arrows indicate the line is statistically
better than the column and the downward arrows indicate the opposite.
The circles indicate the line and column are statistically equal.

CatBoost CART k-NN SVR MLP RF

CatBoost
CART
k-NN
SVR
MLP
RF
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analysis, being either worse than RF and k-NN. In the last positions
came CART and SVR, once again tied.

In fact, the RF algorithm is known to be robust and performs
well, even without tuning its hyperparameters [45]. Despite the
fact that the k-NN algorithm is be the simplest ML algorithm used,
it presented the second best predictive performance. The main rea-
son for this good performance is related to the fact that glasses
with similar composition are expected to have similar Tg values
[7], which is the main idea behind the k-NN algorithm. With these
observations, we thus recommend using the RF algorithm as a
regressor when aiming at predicting all regions of the Tg space.
These analyses answer our research question Q.2.
4.2. Comparing the ML algorithms in the extremes of the Tg distribution

The previous discussion does not address the performance of
the algorithms for two regions of interest for glass makers and
scientists: the extremes of the Tg distribution. Hence, we address
Q.4 by analyzing how the algorithms performed for glasses with
low ( � 450 K), intermediate (450 K < Tg < 1150 K), and high
( � 1150 K) Tg values, respectively. The referred analysis is shown
in Table 3. Here we discovered an interesting behavior: k-NN per-
formed better than the RF in both extremes of the Tg distribution,
except for the intermediate region, where RF was the top con-
tender.

Considering the best performing algorithms, RF and k-NN, the
accuracy considering different ranges of Tg value are very similar, as
shown in Table 4. For both low and high ranges of Tg, k-NN outper-
formed RF by � 5 K. While for the intermediate Tg range, RF outper-
formed k-NN by � 4 K. These differences between the RF and k-NN
algorithms are negligible considering the nature of Tg, which again
emphasizes the use of RF as the most reliable regression algorithm
for predicting this glass property.

We also analyzed the performance of RF and k-NN (using the best
hyperparameter found) on the inclusion of duplicated instances against
replacing them by their median (i.e., the approach used so far). This
analysis can be found in Section 7 of the supplementary material.
Table 3
Statistical test between tuned (line) and tuned (column) algorithms considering
RRMSE. Results for both low (Tg � 450K), intermediate (450K < Tg < 1150K), and
high (Tg � 1150K) Tg ranges are presented, in this order. The upward arrows indicate
the line is statistically better than the column and the downward arrows indicate the
opposite. The circles indicate the line and column are statistically equal.

CatBoost CART k-NN SVR MLP RF

CatBoost
CART
k-NN
SVR
MLP
RF
4.3. Interpreting the RF results: contribution of the different elements to
the value of Tg

Overall, the RF algorithm presented the best predictions for the test
examples and it has been considered an explainable algorithm [46].
Therefore, an analysis of the trees in the RF model could, in principle,
provide valuable insights into how the percentage of each chemical ele-
ment in a glass affects its Tg, which is particularly interesting for extreme
Tg values. Figure 4 illustrates, using Violin plots [47], the distribution of
compositions having very low and very high Tg, whose presence in the
dataset is superior to a certain threshold (10 glasses).

In particular, Figure 4a shows a violin plot for each of the 22 most
abundant chemical elements present in the 400 oxide glasses with
Tg � 450 K. Figure 4b is a related figure for the 17 most abundant ele-
ments contained in the 329 oxide glasses with Tg � 1150 K. The ele-
ments are ordered from left to right according to their abundance in
the respective dataset of very high or very low Tg.

Similar to a box plot, a violin plot shows the data distribution
using a kernel density estimation. Each violin has 2 sides. The right
side shows the distribution of the element in the training data. The
left side represents how often the element is present in the forest’s
trees, with its color being an indirect measure of the confidence of
predictions for the given element. It is important to observe that this
measure is different from the built-in RF’s Feature Importance mea-
sure [26], which, despite being well-known in the ML community,
does not take into account specific ranges of interest in the target var-
iable (Tg in our case).

These figures also show additional information for each ele-
ment. The value on the top of each violin plot refers to the number
of glasses that contain this element in the specific dataset (very
high or very low Tg). Above each value, on the top of the rectangle,
there is another value, the number of glasses containing this ele-
ment in the dataset of 43238 glasses obtained after removing of
the duplicated examples.

Thus, the right side of the violin plots is of statistical nature
(amount of the element in the respective Tg range dataset). The left
side shows how important the RF algorithm considered this ele-
ment for the induction of RF trees, which is part of the explanation
provided by the RF models on how it predicts Tg values for a new,
previously unknown, glass. Thus, the left side bears two types of
information:

� Shape: defined by the glass composition rules (path from tree
root to a tree leaf) of the RF trees. Thus, they reflect concentration
ranges of each element in the trees.

� Color: represents the frequency the element appeared in the
paths present in the RF trees. It can be interpreted as how impor-
tant the element was for the RF predictions, when that element
appears in the glass composition. The higher the importance the
darker the shade of blue.

Next, we discuss these results separately for the high Tg and low Tg
glasses.

4.3.1. Statistics for high and low Tg glasses
Within the set of 329 glasses that have Tg � 1150 K, 306 contain

silicon, 301 contain aluminum, and 103 contain yttrium in their com-
position. Their amounts in these glasses vary from 0% to 33%, 0% to
33%, and 0% to 15%, respectively. These 3 elements are indeed the
basis of glass network forming refractory oxides that form high Tg
glasses. Other components, including some fluxing agents, such as
the alkali and alkaline earth elements, are present in smaller amounts
in other glasses of this dataset, as expected. Calcium is an exception
because it improves the glass-forming ability of aluminate and yttri-
ate glasses, which can explain its high content in some of these high
Tg glasses.



Table 4
Results for the best performing ML algorithms: RF and k-NN for low, intermediate, and high Tg values. The best results by
range of Tg are shown in bold.

Measure RF k-NN

Low Intermediate High Low Intermediate High

RMSE 60 § 10 28.8 § 0.8 70 § 20 50 § 20 33§ 1 60 § 20
RRMSE 2.9 § 0.7 0.20 § 0.01 3 § 1 2.6 § 0.9 0.23 § 0.01 3 § 1
RD (%) 8 § 1 2.32 § 0.06 3.5 § 0.7 6 § 2 2.5 § 0.1 2.9 § 0.6
R2 0.9 § 0.1 0.04 § 0.01 0.93 § 0.06 0.8 § 0.2 0.05 § 0.01 0.91 § 0.08
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Similar statistics are shown for the 400 low Tg compositions. In
this low Tg dataset, 205 formulations contain tellurium, 201 con-
tain silver, and 172 contain vanadium. They are the defining com-
ponents in this group, only scarcely appearing in the previous set
for high Tg glasses (see the full plot with all the elements in the
supplementary material). Conversely, the contents of the major
components of high Tg glasses (silicon, aluminium, and yttrium)
are very small, as expected.

For these two categories of glasses, low and high Tg, it is revealing
to note the most frequent amount of each element. We will consider
this information in the discussion below.
Fig. 4. Composite violin plot of the (a) 17 most frequent elements in low Tg glasses and (b
4.3.2. Teachings of the RF algorithm — high Tg glasses
According to the analysis of frequency of chemical elements in the

RF trees, i.e., the intensity of the color of the left-hand side (LHS), sili-
con and aluminium are considered by RF to be the most important
elements in determining if a glass will have high Tg. The importance
for the other glass formers � yttrium and boron � is considered
lower than that of silicon and aluminium, but higher than for the
rest. It is important to stress that “importance” of an element means
that the presence or lack of the element played a significant role in
the creation of the RF trees.
) 22 most frequent elements in high Tg glasses. Please see text for more information.
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The importance given by RF for the remaining elements (Ca, P, Mg,
Na, Ti, K, Ba, and rare earths Yb, Nd, Tb, Er, and Lu) is lower, i.e., they
appear with low frequency in the RF tree pathways that lead to high
Tg glasses. Therefore, one cannot draw a firm conclusion about them
with the current analysis. Despite this fact, one can see that RF
learned that only small amounts of these elements should be added
to produce high Tg glasses, i.e., the mode of the distributions on the
LHS is close to zero.

According to the LHS distribution shown in Figure 4b, the compo-
sition range learned by the RF trees for silicon, aluminium, and
yttrium is very extensive, from 0 to about 30% atomic fraction, with
modes of 11%, 8%, and 3%, respectively. For the other glass-forming
elements, such as boron, titanium and phosphorous, the learned
ranges are more restricted, up to 20%, with a mode close to zero. This
information learned by RF is in line with knowledge in the field.

When comparing the right-hand side (RHS) and the LHD distribu-
tions of the split violins, it can be observed that the modes of the
respective distributions are dissimilar for Nd, Tb, Er, Lu, and Ba. Thus,
there are glasses with higher amounts of these elements than those
learned by RF. While this seems to go against the RF analysis, it is
important to keep in mind that the confidence of the prediction for
these elements is low; and it is expected that some unusual glasses
might have peculiar compositions.

4.3.3. Teachings of the RF algorithm- low Tg glasses
At first glance, according to what the models learned by the RF

algorithm, low Tg glasses accept higher amounts of network modifier
elements (more than 20at%) when compared with high Tg glasses. This
makes sense as, from a topological point of view, all high Tg glasses
must have a well-connected oxygen network. Indeed, it is well known
that high Tg glasses should contain only small amounts of network
modifiers, whereas the opposite is usual for low Tg glasses.

The models induced by the RF algorithm suggest a range between
zero and 33% for tellurium, with a mode of 5%. Indeed, it is known by
the glass community that tellurite glasses have low Tg. Another glass
network former known for its low Tg is phosphorous. This knowledge
is also reflected in the analysis of the models induced by the RF algo-
rithm. The same conclusion can be drawn for the other glass formers
of the dataset: vanadium, thallium, and boron.

Alkali ions, such as lithium, sodium, potassium, and cesium seem
to have mid-lower to low importance (lighter color) for the induced
model. Despite this fact, according to the analysis of the models
induced by RF, these elements can be added up to about 30%,
whereas alkaline earth elements, such as calcium, barium, and mag-
nesium, can be added up to about 10%. This is in line with knowledge
in the field.

However, Figure 4a shows intriguing results for another glass for-
mer, arsenic. The RF models suggest small additions of this element
to make low Tg glasses. However, in the database used, there are 16
low Tg glasses with high arsenic content, usually above 30%. This is
again a reflection of the lower importance given by the model to
glasses having this element. On the other hand, despite the fact that
the confidence level is low, the induced model suggests that low Tg
glasses could host higher amounts of V, Pb, Li, Na, B, Zn, K, Ba, Mo, Cs,
Sn, Gd. Finally, the range of Si and Al suggested by the model is close
to zero, reflecting that these refractory elements are good for high Tg
glasses, corroborating existing knowledge.

5. Final Considerations

In this work, we carried out a large number of experiments evalu-
ating six popular ML algorithms to analyze a dataset of over 43240
oxide glass compositions and their respective glass transition tem-
peratures, Tg. We investigated the performance of these algorithms
when used for the prediction of Tg values with default and with tuned
hyperparameter values.
We also investigated the importance of using explainable models
to better understand glass property-composition relationships. The
results obtained in this work are supported by statistical tests and
pointed out that, as expected, the models induced using tuned hyper-
parameter values performed better than those induced using default
hyperparameter values. The tuned version of the RF algorithm pre-
sented the best overall predictive performance for the test examples.
For extreme values of Tg, the k-NN algorithm was slightly better than
RF. The RF also produced an explainable model, which sheds light on
the individual importance of the chemical elements for developing
glasses with very low or very high Tg.

This study can be easily expanded to predict other composition-
property combinations, such as thermal expansion coefficient, elastic
modulus, hardness, viscosity, and density, to successfully replace
empirical approaches for developing novel glasses with useful prop-
erties and applications.

Data availability statement

The glass transition temperature data used in this work comes
from the SciGlass database. This database was recently published
under an ODC Open Database License (ODbL) at https://github.com/
epam/SciGlass. The raw data used in this work is available as supple-
mentary data.

Declaration of Competing Interest

The Authors declare no Competing Financial or Non-Financial
Interests.

CRediT authorship contribution statement

Edesio Alcobaça: Formal analysis, Writing - original draft. Saulo
Martiello Mastelini: Formal analysis, Writing - original draft. Tiago
Botari: Formal analysis, Writing - original draft. Bruno Almeida
Pimentel: Writing - original draft. Daniel Roberto Cassar: Data cura-
tion, Writing - original draft. Andr�e Carlos Ponce de Leon Ferreira
de Carvalho:Writing - original draft. Edgar Dutra Zanotto:Writing -
original draft. All authors: research conception and interpretation of
results.

Acknowledgements

This study was funded by the S~ao Paulo State Research Founda-
tion, FAPESP, grants 2013/07793-6 (CeRTEV), 2013/07375-0, CEMEAI,
and its super computer Euler), 2018/14819-5 (EA), 2018/07319-6
(SMM), 2017/06161-7 (TB), 2017/20265-0 (BAP), and 2017/12491-0
(DRC), the Coordination for the Improvement of Higher Education
Personnel (CAPES) and the National Council for Scientific and Techno-
logical Development (CNPq), Brazilian funding agencies. We also
would like to thank Intel for providing computational resources.

Supplementary material

Supplementary material associated with this article can be found
in the online version at doi:10.1016/j.actamat.2020.01.047

References

[1] E.D. Zanotto, J.C. Mauro, The glassy state of matter: Its definition and ultimate
fate, Journal of Non-Crystalline Solids 471 (2017) 490–495.

[2] E.D. Zanotto, F.A.B. Coutinho, How many non-crystalline solids can be made from
all the elements of the periodic table? Journal of Non-Crystalline Solids 347 (1�3)
(2004) 285–288, doi: 10.1016/j.jnoncrysol.2004.07.081.

[3] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K.A. Persson,
G. Ceder, A. Jain, Unsupervised word embeddings capture latent knowledge from
materials science literature, Nature 571 (7763) (2019) 95.

https://doi.org/10.1016/j.actamat.2020.01.047
http://refhub.elsevier.com/S1359-6454(20)30072-0/sbref0001
http://refhub.elsevier.com/S1359-6454(20)30072-0/sbref0001
http://dx.doi.org/10.1016/j.jnoncrysol.2004.07.081
http://refhub.elsevier.com/S1359-6454(20)30072-0/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30072-0/sbref0003
http://refhub.elsevier.com/S1359-6454(20)30072-0/sbref0003


100 E. Alcobaça et al. / Acta Materialia 188 (2020) 92�100
[4] H. Huo, Z. Rong, O. Kononova, W. Sun, T. Botari, T. He, V. Tshitoyan, G. Ceder,
Semi-supervised machine-learning classification of materials synthesis proce-
dures, npj Computational Materials 5 (1) (2019) 62.

[5] M.L.F. Nascimento, L. Souza, E.B. Ferreira, E.D. Zanotto, Can glass stability parame-
ters infer glass forming ability? Journal of Non-Crystalline Solids 351 (40�42)
(2005) 3296–3308, doi: 10.1016/j.jnoncrysol.2005.08.013.

[6] A.K. Varshneya, J.C. Mauro, Fundamentals of Inorganic Glasses, 3 edition, Elsevier, 2019.
[7] D.R. Cassar, A.C.P.L.F. de Carvalho, E.D. Zanotto, Predicting glass transition tem-

peratures using neural networks, Acta Materialia 159 (2018) 249–256, doi:
10.1016/j.actamat.2018.08.022. URL http://www.sciencedirect.com/science/arti-
cle/pii/S1359645418306542

[8] S.J. Joyce, D.J. Osguthorpe, J.A. Padgett, G.J. Price, Neural network prediction of
glass-transition temperatures from monomer structure, Journal of the Chemical
Society, Faraday Transactions 91 (16) (1995) 2491, doi: 10.1039/ft9959102491.
URL http://xlink.rsc.org/?DOI=ft9959102491

[9] H.K.D.H. Bhadeshia, Neural Networks in Materials Science, ISIJ International 39
(10) (1999) 966–979, doi: 10.2355/isijinternational.39.966.

[10] C. Dreyfus, G. Dreyfus, A machine learning approach to the estimation of the
liquidus temperature of glass-forming oxide blends, Journal of Non-Crystalline
Solids 318 (1-2) (2003) 63–78, doi: 10.1016/S0022-3093(02)01859-8.

[11] Z. Zhang, K. Friedrich, Artificial neural networks applied to polymer composites: a
review, Composites Science and Technology 63 (14) (2003) 2029–2044, doi:
10.1016/S0266-3538(03)00106-4. URL http://linkinghub.elsevier.com/retrieve/
pii/S0266353803001064

[12] A. Afantitis, G. Melagraki, K. Makridima, A. Alexandridis, H. Sarimveis,
O. Iglessi-Markopoulou, Prediction of high weight polymers glass transition tem-
perature using RBF neural networks, Journal of Molecular Structure: THEOCHEM
716 (1-3) (2005) 193–198, doi: 10.1016/j.theochem.2004.11.021. URL http://link-
inghub.elsevier.com/retrieve/pii/S0166128004009510

[13] D.S. Brauer, C. R€ussel, J. Kraft, Solubility of glasses in the system
P2O5�CaO�MgO�Na2O�TiO2: Experimental and modeling using artificial neural
networks, Journal of Non-Crystalline Solids 353 (3) (2007) 263–270, doi:
10.1016/j.jnoncrysol.2006.12.005. URL http://linkinghub.elsevier.com/retrieve/
pii/S0022309306013135

[14] X. Chen, L. Sztandera, H.M. Cartwright, A neural network approach to prediction
of glass transition temperature of polymers, International Journal of Intelligent
Systems 23 (1) (2008) 22–32, doi: 10.1002/int.20256.

[15] W. Liu, C. Cao, Artificial neural network prediction of glass transition temperature
of polymers, Colloid and Polymer Science 287 (7) (2009) 811–818, doi: 10.1007/
s00396-009-2035-y.

[16] J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Accelerating
the Design of Functional Glasses through Modeling, Chemistry of Materials 28
(12) (2016) 4267–4277, doi: 10.1021/acs.chemmater.6b01054.

[17] C.M. Bishop, Pattern recognition and machine learning, springer, 2006.
[18] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning

algorithms, in: Proceedings of the 23rd international conference on Machine
learning, ACM, 2006, pp. 161–168.

[19] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, Journal
of Machine Learning Research 13 (Feb) (2012) 281–305.

[20] A.J. Smola, B. Sch€olkopf, A tutorial on support vector regression, Statistics and
computing 14 (3) (2004) 199–222.

[21] L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining explana-
tions: An overview of interpretability of machine learning, 5th IEEE International
Conference on Data Science and Advanced Analytics, DSAA 2018, Turin, Italy,
October 1-3, 2018, 2018, pp. 80–89, doi: 10.1109/DSAA.2018.00018.

[22] Nature Publishing Group, Towards trustable machine learning, Nature Biomedical
Engineering 2 (10) (2018) 709–710, doi: 10.1038/s41551-018-0315-x.

[23] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are uni-
versal approximators, Neural networks 2 (5) (1989) 359–366.

[24] A.V. Dorogush, V. Ershov, A. Gulin, Catboost: gradient boosting with categorical
features support, arXiv: 1810.11363(2018).

[25] K.Q. Weinberger, L.K. Saul, Distance metric learning for large margin nearest neigh-
bor classification, Journal of Machine Learning Research 10 (Feb) (2009) 207–244.

[26] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.
[27] L. Breiman, Classification and regression trees, Routledge, 2017.
[28] A.H. Cai, X. Xiong, Y. Liu, W.-k. An, J.-y. Tan, Y. Luo, Artificial neural network
modeling for undercooled liquid region of glass forming alloys, Computa-
tional Materials Science 48 (1) (2010) 109–114, doi: 10.1016/j.com-
matsci.2009.12.012. URL: http://www.sciencedirect.com/science/article/pii/
S0927025609004613
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