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1  |   INTRODUCTION

A system is considered spatially homogeneous regarding one 
or more of its properties when they are invariant with respect 
to the spatial location. In the design of high-performance 
glasses and glass-ceramics, chemical homogeneity is a valu-
able, desirable property, allowing for the reproducibility of 
optical, mechanical, thermal, electrical, and other charac-
teristics, regardless of the analyzed portion of the material. 
Furthermore, most theoretical models of nucleation kinetics 
(e.g., the Classical Nucleation Theory, CNT) assume a chem-
ically homogeneous material. Therefore, any crystallization 

analyses of vitreous materials would be incomplete without 
preliminary inspection of their chemical homogeneity.

To access the chemical homogeneity of glasses, opti-
cal1–4 and chemical5,6 procedures have been proposed. 
However, since all these methods have some limitations, 
chemical homogeneity determination is still a current 
challenge. Such limitations include inconsistent results 
of optical methods based on the Christiansen-Shelyubskii 
procedure,7,8 and the difficulty in obtaining, interpret-
ing, and getting an accurate estimate of the elemental 
composition due to the considerable amount of spectra 
generated by chemical methods,9 such as laser-induced 
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Abstract
In this work, we implemented and tested a statistical method to evaluate the mi-
crostructural uniformity of partially crystallized glasses employing the aggregation 
index (R-index), a parameter derived from the Poisson distribution function, which 
has mainly been used in Ecology studies. Since the crystal nucleation rate strongly de-
pends on the chemical composition, the spatial crystal distribution in glass-ceramics 
can be used to infer their chemical homogeneity. We also tested the hypothesis, ad-
vanced by some authors, of preferential secondary nucleation close to preexisting 
crystals (even in chemically homogeneous samples). To this end, we conducted a 
nearest-neighbor statistical analysis of the spatial crystal distribution in partially crys-
tallized Li2Si2O5 and Ba5Si8O21 glasses, used as model materials, by inspecting opti-
cal micrographs obtained at different magnifications. The resultant R-indexes indicate 
a very high degree of homogeneity of the crystal number distribution, reflecting the 
uniform distribution of the chemical elements in the parent glasses. Moreover, the 
results for both glasses refute the suggestion that crystal nucleation is self-correlated. 
These outcomes allow us to suggest the R-index as a valuable and easily implemented 
tool to evaluate the chemical homogeneity of glasses that undergo internal nucleation, 
such as those used for glass-ceramics.
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breakdown spectroscopy (LIBS)5 and laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS).6 
Even though these chemical methods could determine if 
a given glass is homogeneous, the lowest spatial scale is 
limited by the laser spot size, generally of several microns. 
Consequently, some alternative methods10–15 have arisen; 
among them, the one proposed by Souza et al.12 is particu-
larly interesting as it enables the quantification of chemical 
homogeneity of glasses and the associated scale in a prac-
tical way. This is accomplished indirectly by a statistical 
analysis of the spatial crystal distribution in partially crys-
tallized glasses.

In this work, we follow a similar procedure to that pro-
posed in Souza et al.12 However, instead of using only the 
number of crystals, the present method compares the de-
parture of an experimental spatial crystal distribution from 
an equivalent random, uniform distribution of reference by 
comparing the mean nearest-neighbor distances between 
both distributions. The reference distribution is based on the 
Poisson point statistics since it describes the complete spatial 
randomness of a discrete random variable,16 such as the num-
ber of crystals distributed in different areas of a specimen. 
Then, the homogeneity degree and the scale at which the 
observed spatial crystal distribution departs or approaches 
a random expectation can be quantified by the aggregation 
index (R). An advantage of this method over that reported 
in Souza et al.12 is the possibility of determining the system 
tendency towards clustered or periodic crystal distributions, 
in addition to its homogeneity degree and scale. The R-index 
was proposed long ago by Clark and Evans17 for Ecology ap-
plications. Nevertheless, its mathematical foundation is valid 
for the statistical analysis of any objects that can be treated 
as “points” distributed in any mathematical space (e.g., line, 
area, or volume), such as the distribution of crystals in a 
glassy matrix (glass-ceramic).

Hence, this article's first objective is to test, for the first 
time, the R-index method to evaluate the chemical homoge-
neity of glasses that can be crystallized internally, such as 
those used for glass-ceramics. Its goal also is to verify if the 
standard laboratory practice of melting, crushing, and remelt-
ing twice leads to chemically homogeneous glasses. Finally, 
we also intend to test whether a recent suggestion of pref-
erential nucleation that leads to the formation of satellite-
like crystals near previously existing crystals18 (nucleation 
self-correlation) is valid for oxide glasses. Bearing in mind 
these objectives, we present in the following sections the the-
oretical background associated with the R-index (Section 2), 
the methodology to test its validity in partially crystallized 
Li2Si2O5 and Ba5Si8O21 glasses, used here as model mate-
rials (Section 3), and the main results (Section 4). To con-
clude, we discuss the method's reliability and its advantages 
for determining the chemical homogeneity degree in glasses 
that undergo internal nucleation in experimental time scales 
(Sections 5 and 6).

2  |   SPATIAL ANALYSIS OF POINT 
DATA

2.1  |  Point spatial distributions

The distribution of a certain number of points in space can 
tend toward agglomeration, uniform randomness, or perio-
dicity, as shown respectively in Figure 1A–C, for the particu-
lar case of a two-dimensional (2D) space.19

The precise identification of these patterns is relevant since 
it could give clues about the underlying process or the physical 
interactions that originate them. In general, if there are prefer-
ential regions, they will lead to agglomerated (Figure 1A) or 
periodic (Figure 1C) point spatial distributions, respectively. 

F I G U R E  1   Simulated (A) clustered, (B) uniform random, and (C) periodic 2D point distributions. Each distribution contains 448 points in a 
square of 100 × 100 arbitrary units. The simulations that resulted in these figures were carried out using the Matplotlib36 and Scikit-learn39 Python 
libraries
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On the other hand, the absence of any preference in the system 
induces uniform random patterns (Figure 1B). Randomness 
or stochasticity is the main characteristic of phenomena that 
varies unpredictably or are guided by chance. Mathematically, 
randomness is defined as a collection of random variables (N) 
indexed by a mathematical set (T), which could be time (t) 
or space (s), such that {N(t): t ∈ T} or {N(s): s ∈ T}. In other 
words, at every t or s in set T, a random number N(t) or N(s) 
is observed.20 Uniform random distributions are particularly 
interesting for the statistical analysis of point distributions be-
cause they can be used as a reference or null models to charac-
terize other point patterns, which are generally more common 
in nature.19

2.2  |  Crystal nucleation and Poisson 
point process

Crystal nucleation in glasses is a stochastic phenomenon, char-
acterized by a crystalline nuclei random appearance in a vitre-
ous matrix.21 This process occurs at any temperature below the 
melting point, after a certain time.22 The crystal nucleation pro-
cess is distinguished as homogeneous or heterogeneous. In the 
former case, two properties are satisfied at different regions of 
the analyzed system, observed at any scale: (i) the crystal num-
ber density is independent of the area scrutinized, and (ii) the 
emergence of a nucleus is independent of any other. Property (i) 
reflects the fact that there are no preferential sites for crystal nu-
cleation in the vitreous matrix, whereas property (ii) indicates 
that crystallization in one region does not influence crystalliza-
tion in another one. This is true for the so-called stoichiometric 
or polymorphic crystallization when the chemical composition 
of the parent glass and crystal are the same. For glass formers 
that present internal nucleation, with or without the addition of 
nucleating agents, these conditions are only reached in a chemi-
cally homogeneous glass. Consequently, one can expect a uni-
form random crystal distribution, similar to the point pattern 
displayed in Figure 1B.

On the other hand, heterogeneous nucleation starts at prefer-
ential sites, such as foreign solid particles and surfaces—cracks, 
bubbles, or phase boundaries—which locally decrease the ther-
modynamic barrier.23 Fluctuations of chemical elements inside 
the vitreous matrix also generate nonuniform crystal distribu-
tions. Some factors producing these fluctuations could be an 
incomplete mixture of the chemicals before melting; the high 
viscosity of the glass-forming melts,12 which impairs mixing; 
and the use of reagents with a high-density difference (e.g., 
barium or lead silicates). In addition to chemical inhomogene-
ity, nucleation forming periodic distributions (Figure 1C) can 
be obtained by local and guided heat treatments, using, for in-
stance, laser-induced crystallization.24

In the case of nonuniform crystal distributions, such as 
clustered (Figure 1A) or periodic (Figure 1C) dispositions, 

the property (ii) is not satisfied. This situation can occur, for 
instance, by preformed crystals that favor the formation of 
satellite-like crystals around them, as hypothesized in a re-
cent study,18 or by controlling the appearance of crystals in 
specific locations inside the glass matrix by a local laser heat 
treatment, such as in photo-thermo-refractive glasses.25,26 On 
the other hand, clustered systems usually do not obey prop-
erty (i) because the crystal number density tends to vary when 
analyzing equal areas in different system regions or changing 
the analyzed areas' size. Conversely, periodic systems exhibit 
a constant crystal density at different regions of the system 
with the same area and at different subareas, complying with 
the property (i).

Since the spatial crystal distribution in a partially crys-
tallized sample reflects the parent glass's chemical ho-
mogeneity, statistical analysis can be used as an indirect 
measurement of homogeneity. Thus, the spatial distribution 
of crystals should satisfy properties (i) and (ii) to guarantee 
it results from a homogeneous glass, that is, the probability 
to find a crystal in such uniform distribution should be char-
acterized by a Poisson distribution function. This function 
describes the distribution of a set of points randomly dis-
posed on a mathematical space where an event is indepen-
dent of others.16 For a 2D crystal random distribution, the 
probability (P) of finding a certain number of crystals (N) in 
a specific area (A), is given by16:

where the number of crystals is a nonnegative integer, such that 
N (A) = n, with n = 0, 1, 2,…, N = �A is the mean number of 
crystals in a specific area, and ρ is the number of crystals per 
unit area.

2.3  |  The nearest-neighbor index, R

Hertz27 and Clark and Evans17 showed independently that in 
a population of objects following a Poisson distribution in a 
2D space, Equation (1), the probability of finding the nearest 
neighbor at a distance r from a reference point, located at the 
center of a circular area, is given by the Weibull probability 
distribution function, defined as follows17:

with a mean or expected value r
E
= 1∕

�
2
√
�
�
 and a standard 

deviation �
r

E
= 0.26136∕

√
N�. Thus, based on the Poisson 

and the Weibull distributions, Clark and Evans17 proposed the 
aggregation index (R-index) to establish the degree of departure 
from uniform random expectation of an observed distribution. 
The R-index compares the mean value of the nearest-neighbor 

(1)P {N (A) = n} =
N

n

n!
exp−N,

(2)P (r) = 2��re
−��r

2

,
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distance (r) in an observed point distribution with the mean 
value of the nearest-neighbor distance that would be expected (
r

E

)
 if that distribution was random. The R-index is then de-

fined as:

whose variance is given by var (R) = 0.2732∕N.28 R takes val-
ues between 0 and 2.149. The lower limit (R = 0) corresponds 
to perfect agglomeration, where all the objects have the same 
coordinates, then r = 0. Correspondingly, if R is small, the 
distribution of points looks like the clustered pattern shown in 
Figure 1A, where R = 0.49 (as will be shown in Section 4.1). 
The upper limit (R = 2.1491), on the other hand, indicates per-
fect periodicity, corresponding to a hexagonal point distribution 
inside a hexagonal region, where the distance between points is 
maximized,17 as roughly represented in Figure 1C. However, 
if the observed distribution is perfectly uniform, random, and 
homogeneous, similar to the distribution shown in Figure 1B, r 
equals r

E
, and R = 1.

3  |   MATERIALS AND METHODS

3.1  |  Glass preparation

Lithium disilicate (Li2Si2O5) and pentabarium octosilicate 
(Ba5Si8O21) glasses were selected for this study because both 
undergo internal nucleation in laboratory time scales when 
properly heated, allowing for statistical analyses of crystal 
distributions in partially crystallized samples. The Ba5Si8O21 
glass was synthesized from BaCO3 (Alfa Aesar, 99.8%) and 
SiO2 (Vitrovita, >99.9%). The reagents were previously ho-
mogenized in a Turbula T10B mixer and calcined at 1653 K 
for BaCO3 decomposition and the formation of the phase 
of interest. Then, the mixture was melted in a Pt crucible at 
1793 K for approximately 30 min. To enhance the chemical 
homogeneity, the liquid was quenched, broken, and remelted 
twice and finally poured and pressed between two steel plates 
to form ~3-mm-thick glass samples. The Li2Si2O5 glass was 
not previously calcined but was prepared using the same 
melting/splat cooling process; the full procedure is described 
in Deubener et al.29

3.2  |  Heat treatments

Samples of approximately 3  ×  3  ×  3  mm3 were partially 
crystallized following double-stage heat treatments in ver-
tical furnaces with a precision of ±1 K. This method con-
sists of heating the samples to the nucleation temperature 
(Tn) and keeping them during a nucleation time (tn). After 

that, the samples are cooled back to room temperature and 
then treated at a development temperature (Td) for a time td, 
to grow the nuclei previously formed at Tn until a detectable 
size.30 All the information about the heat treatments used in 
this work is summarized in Table 1. These heat treatment 
cycles were selected to make the observation of crystals in 
the samples’ cross-section feasible in the selected optical 
magnifications.

3.3  |  Microstructural analysis

To observe the crystal distribution in the samples’ cross-
section using reflected light optical microscopy, the partially 
crystallized samples were initially ground using 320 to 1200 
grit SiC paper and polished with a CeO2 solution. Afterward, 
Li2Si2O5 samples were immersed in a room-temperature ul-
trasonic water bath for ~10 min at a frequency of 37 kHz, 
whereas Ba5Si8O21 samples were etched in a 2% HF (vol%) 
solution for ~10 s to reveal the crystals. Since the homogene-
ity degree can change when analyzing different spatial scales 
of the same system, the study of the crystal spatial distribu-
tion was performed using three optical magnifications for 
each sample. The micrographs were obtained using a Nikon 
Eclipse LV 100 N Pol microscope with a coupled camera DS–
fi2. For the Li2Si2O5 glass, magnifications of 200×, 500×, 
and 1000× were used, whereas, for the Ba5Si8O21 glass, mag-
nifications of 500×, 1000×, and 1500× were employed. The 
criterion to choose these magnifications was the facility in 
visualizing and counting crystals, due to moderate nuclea-
tion rate of each glass, whose maximums are ~109 m−3 s−1 
for the Li2Si2O5 glass30 and ~1012 m−3 s−1 for the Ba5Si8O21 
glass.31,32

To ensure a statistically representative number of mi-
crographs, we estimated that a minimum number of ~385 
crystals should be counted for each magnification. This 
number was obtained using a sample size calculator,33 con-
sidering a confidence level of 95%, a margin of error of 
5%, and an unknown population of crystals. Thus, a total 
of 12, 17, 18, and 19 micrographs were taken for magni-
fications of 200×, 500×, 1000×, and 1500×, respectively. 
All micrographs were analyzed with the software ImageJ34 
to determine the number of crystals (N), and the Cartesian 

(3)R =
r

r
E

,

T A B L E  1   Double stage heat treatments used to partially crystalize 
the Li2Si2O5 and Ba5Si8O21 glasses

Composition Tn (K) tn (min) Td (K) td (min)

Li2Si2O5 708 3780 865 10

745 450 15

Ba5Si8O21 948 300 1085 8

988 10 1103 5
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coordinates (x, y) of the crystals’ geometric centers. This 
information is necessary to access the parameters r, r

E
 and, 

consequently, the R-index as will be explained in the next 
sections.

3.4  |  Edge correction and nearest-neighbor 
distance calculation

When a subarea of a 2D point distribution is analyzed, edge 
effects should be considered to reduce the overestimation 
of the mean nearest-neighbor distance, and consequently, 
the R-index. The edge effect emerges due to the presence of 
points outside the studied region that cannot be accounted 
for in the calculations, albeit they can be nearest-neighbors 
of points close to the edges and inside the observed area.35 
To minimize this effect, in our analysis, we implemented an 
edge correction procedure, namely, NN1 (nearest-neighbor 
1), proposed in Pommerening and Stoyan.35 The strategy 
consists of filtering all the crystals close to the micro-
graphs' edges, whose distances to their nearest-neighbors 
are greater than their distances to one of the analyzed area 
edges. Otherwise, the points will not be discarded. As a 

result, a new 2D distribution with N′ crystals is obtained, 
such that N′ ≤ N.

For example, let us consider a simulated distribution of 
399 points randomly distributed in a unit area,36 as presented 
in Figure 2A. Now, let us take a smaller area near the top 
edge, containing two points P1 and P2, with their respective 
nearest neighbors PNN

1
 and PNN

2
, as shown in Figure 2B. The 

distance from P1 and P2 to their nearest neighbors are r1 and 
r2, respectively. In this case, the distance, a1, from P1 to the 
top edge is less than r1 (a1 < r1). Consequently, P1 will be 
discarded by the edge correction procedure. In contrast, the 
distance a2 from P2 to the top edge is greater than r2 (a2 > r2). 
Therefore, P2 will not be discarded since PNN

2
 is most likely to 

be its nearest-neighbor.
Knowing the Cartesian coordinates (x, y) for each point in 

the original distribution, the above-described conditions can 
be checked for every point. Figure 2C displays the 31 discarded 
open green circles and the new set of N′ = 368 particles, en-
closed by a new area (blue square), which is smaller than the 
original. This new area is defined by tracing a rectangle whose 
edges pass close to the four outermost particles (red triangles) 
of the new particle set. Figure 2D shows one of the four outer-
most points, P0 (red triangle), with its nearest-neighbor (black 

F I G U R E  2   (A) Simulated random distribution of N = 399 points in a square unit-area. The inset represents the chosen area to illustrate the 
edge correction procedure. (B) The inset in (A) contains two particles P1 and P2 with their respective nearest neighbors PNN

1
 and PNN

2
. According to 

the edge correction procedure, P2 will be part of the new set of points while P1 will be discarded. (C) After the edge correction, a new number of 
crystals N′ = 368 was obtained, which are enclosed by a reduced area as indicated by the inner blue square. The discarded points are represented by 
open green circles and the outermost particles of the new distribution by red triangles. (D) The inset in (C) shows one of the four outermost points 
(P0) taken as a reference to define the new area. The simulation was obtained with the Matplotlib36 and the Scikit-learn39 Python libraries
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circle) and one of the discarded points (open green circle) 
after edge correction. The blue lines represent the edges of 
the new area.

Finally, with the new set of N′ points and their respec-
tive Cartesian coordinates, the i-th nearest-neighbor dis-
tance (ri) between a point Pi and its nearest-neighbor PNN

i
 

was obtained by calculating the shortest Euclidean distance 

between every single point and the others, including the 
points filtered by the edge correction procedure. Although 
the discarded points are not taken into account in the cal-
culation of N′ and the new area, they are considered in the 
nearest-neighbor distances' calculations because they can 
be the nearest neighbors of nondiscarded points. Thus, 
parameter r was determined as the mean value of all the 

F I G U R E  3   Simulated clustered (top), random (center), and hexagonal-periodic (bottom) distributions of points for three different arbitrary 
areas (in a.u.): (A) 100 × 100, (B) 70 × 70, and (C) 40 × 40. The total number of points for each distribution in the largest area is N = 448
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nearest-neighbor distances, r = N
�−1∑

i
r

i
. Besides the deter-

mination of both the Cartesian coordinates of objects dis-
tributed in a 2D image and their nearest-neighbor distances 
is easily programmable in a computer routine, there are also 
free tools that can be used to accomplish this task in the 
ImageJ software.37

3.5  |  Statistical significance

The statistical significance of the difference between r and r
E
 

was determined via a two-tailed Z-score38:

The Z-score compares the mean nearest-neighbor dis-
tances of the observed and the expected random distributions, 
taking as reference the Poisson and the Weibull distribution 
characterized by r

E
 and �

r
E
. Assuming a confidence level of 

95%, two cases are considered:

•	 If |Z| < 1.96, the difference r − r
E
 is not statistically signif-

icant, and we can say the observed distribution is random 
and homogeneous.

•	 If |Z| ≥ 1.96, the difference r − r
E
 is statistically signifi-

cant, and the observed distribution of crystals departs from 
a uniform random and homogeneous distribution to a cer-
tain degree.

In the second case, the percentage of homogeneity can be 
accessed by taking the R-indexes for clustered, homogeneous, 
and periodic systems as RC = 0, RH = 1, and RP = 2.149, re-
spectively (see Section 2.3). If the experimental R-index (R) 
is less or greater than one, then the percentage of homogene-
ity can be calculated as: 

[
1 −

(||RH
− R|| ∕ ||RH

− R
i
||
)]

100%

, with i = C,P. Hence, the R-index as defined by Equation 
(3) can be used as a good indicator to infer the homogeneity 
degree and determine an eventual tendency toward agglomer-
ation or periodicity in 2D crystal distributions.

4  |   RESULTS

4.1  |  Simulated distributions

To test the validity of the edge correction procedure and the 
R-index (see Section 3.4), we considered the simulated dis-
tributions of points shown in Figure 1, which were created 
using the Matplotlib36 and the Scikit-learn Python libraries.39

A population of N = 448 points was distributed in an area 
A = 100 × 100 in arbitrary units (a.u.), following clustered, 
random and hexagonal-periodic configurations. From this 

area, two other subareas equivalent to its 70% and 40% were 
outlined for each pattern, as presented in Figure 3A–C before 
(black margin) and after edge correction (blue margin). The 
values of N, N′, A, ρ, r, r

E
, R, var(R) and Z-score for the sim-

ulated distributions after edge correction are summarized in 
Table 2.

4.2  |  Experimental crystal distributions

Figure 4A–C shows some representative optical micrographs 
acquired for the Li2Si2O5 samples at three different magnifica-
tions, and two nucleation temperatures: 708 K (top) and 745 K 
(bottom). For both nucleation temperatures, the R-index was (4)Z =

r − r
E

�
r

E

.

T A B L E  2   Values of N, N′, A, ρ, r, r
E
, R, var (R), and Z-score for 

the simulated distributions after edge correction

Distribution Parameter

Results

100 × 100 70 × 70 40 × 40

Cluster N 448 296 80

N′ 448 283 71

A (×103 a.u.) 10 4.49 1.19

ρ (a.u.) 0.04 0.06 0.06

r(a.u.) 1.16 1.16 1.07

r
E
 (a.u.) 2.36 1.99 2.05

R 0.49 0.58 0.52

var (R) (×10−4) 6.10 9.65 38.50

Z 20.61 13.44 7.73

Random N 448 220 82

N′ 405 192 65

A (×103 a.u.) 9.74 4.51 1.34

ρ (a.u.) 0.04 0.04 0.05

r(a.u.) 2.35 2.45 2.33

r
E
 (a.u.) 2.45 2.42 2.27

R 0.96 1.01 1.03

var (R) (×10−4) 6.75 14.20 42.00

Z 1.58 0.27 0.41

Periodic N 448 216 67

N′ 380 169 43

A (×103 a.u.) 8.50 3.85 1.02

ρ (a.u.) 0.04 0.04 0.04

r(a.u.) 5 5 5

r
E
 (a.u.) 2.36 2.39 2.44

R 2.12 2.09 2.05

var (R) (×10−4) 7.19 16.20 63.50

Z 41.56 27.21 13.19

Note.: In this and other tables, some values must be multiplied by the factor 
within parentheses to obtain the actual quantity in its general form.
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calculated for several micrographs (see Section 3.3) taken with 
200×, 500×, and 1000× magnifications. The average values of 
N′, A, ρ, r, r

E
, R, var (R) and the Z-score for these micrographs, 

applying the edge correction, are summarized in Tables 3 and 
4 for Tn = 708 K and 745 K, respectively.

Similarly, Figure 5A–C shows some representative optical 
micrographs for Ba5Si8O21 samples, at two nucleation tem-
peratures: 948 K (top) and 988 K (bottom). Since this com-
position presents spherical crystals, it is easier to obtain the 
Cartesian coordinates (x,y) of the crystals’ geometric centers. 
In this case, the R-index was calculated considering the 500×, 
1000×, and 1500× magnifications. The average values of N′, 
A, ρ, r, r

E
, R, var (R) and the Z-score for Ba5Si8O21, with edge 

correction, are summarized in Tables 5 and 6 for Tn = 948 K 
and 988 K, respectively.

5  |   DISCUSSION

5.1  |  Simulated distributions

The homogeneity degree of each simulated distribution 
(Figure 3) was initially evaluated by visual inspection and 
through the density of the points (ρ). As shown in Table 2, 
the simulated clustered distribution has a variable ρ ranging 
from 0.04 to 0.06 a.u., according to the size of the original 

F I G U R E  4   Optical micrographs for Li2Si2O5 samples heat-treated at Tn = 708 K (top) for 63 h and at Tn = 745 K (bottom) for 7.5 h using the 
magnifications (A) 200×, (B) 500×, and (C) 1000×

Parameters

Li2Si2O5 (Tn = 708 K)

200× Error 500× Error 1000× Error

N′ 304 25 41 7 10 4

A (×103 µm2) 291 4 40.60 1.88 8.46 0.80

ρ (×10−3 µm−2) 1.05 0.10 1.01 0.22 1.18 0.58

r(µm) 15.75 0.68 14.61 1.60 13.11 2.62

r
E
 (µm) 15.50 0.67 15.95 1.18 15.19 3.09

R 1.02 0.09 0.92 0.17 0.86 0.35

var (R) (×10−4) 9.04 69.00 313

Z 0.53 1.03 0.89

T A B L E  3   Average values of N′, A, 
ρ , r, rE, R, var (R), and Z-score for the 
experimental distributions of the Li2Si2O5 
crystals in the sample treated at Tn = 708 K 
for 63 h after edge correction
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observation area. This result, in addition to the precise dis-
position of points at preferential sites, is a sign of heteroge-
neity in the clustered system (see Section 2.2). It is worth 

mentioning that the 100 × 100 a.u. cluster distribution is still 
the same before and after the edge correction since, in this 
case, the distance of all the crystals to their nearest-neighbors 

Parameters

Li2Si2O5 (Tn = 745 K)

200× Error 500× Error 1000× Error

N′ 281 14 38 5 8 3

A (×103 µm2) 283 3 36.70 1.53 5.86 1.42

ρ (×10−3 µm−2) 0.99 0.06 1.04 0.18 1.36 0.84

r(µm) 16.75 0.88 15.27 1.37 12.89 3.07

r
E
 (µm) 15.88 0.40 15.63 0.95 14.36 3.25

R 1.05 0.08 0.98 0.15 0.90 0.42

var (R) (×10−4) 9.75 73.20 434

Z 1.75 0.28 0.58

T A B L E  4   Average values of N′, A, 
ρ , r, r

E
, R, var (R), and Z-score for the 

experimental distributions of the Li2Si2O5 
crystals in the sample treated at Tn = 745 K 
for 7.5 h after edge correction

F I G U R E  5   Optical micrographs for the Ba5Si8O21 samples heat-treated at Tn = 948 K (top) for 5 h and at Tn = 988 K (bottom) for 10 min 
using the magnifications (A) 500×, (B) 1000×, and (C) 1500×

Parameters

Ba5Si8O21 (Tn = 948 K)

500× Error 1000× Error 1500× Error

N′ 232 18 51 7 20 6

A (×103 µm2) 43.40 0.67 9.56 0.42 3.50 0.35

ρ (×10−3 µm−2) 5.34 0.50 5.33 0.97 5.71 2.29

r(µm) 6.61 0.27 6.37 0.72 6.28 1.01

r
E
 (µm) 6.85 0.24 6.90 0.40 6.80 0.73

R 0.96 0.07 0.92 0.16 0.92 0.25

var (R) (×10−4) 11.80 54.90 148

Z 1.04 1.06 1.16

T A B L E  5   Average values of N′, 
A, ρ, r, r

E
, R, var (R)and Z-score for the 

experimental distributions of the Ba5Si8O21 
crystals in the sample treated at Tn = 948 K 
for 5 h after edge correction
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is smaller than their distance to one of the analyzed area 
edges, and therefore, N′ = N.

The periodic distribution is also heterogeneous, despite 
having a constant ρ = 0.04 a.u. for all the studied areas. The 
privileged location of points at linear regions (columns and 
rows) indicates such heterogeneity. On the other hand, the 
simulated random distribution, characterized by a nearly con-
stant density ρ ~ 0.04 a.u. at the different areas, along with a 
random disposition of points, suggests a highly homogeneous 
distribution.

Although the qualitative analysis exposed above can be 
used as a first approximation to verify the point distribu-
tion behavior, a more precise quantification is given by the 
R-index, presented in Table 2. Therein, R = 0.49, 0.58, and 
0.52 for the cluster distribution, and R = 2.12, 2.09, and 2.05 
for the periodic distribution at the evaluated unit area and 
subareas confirm a tendency of these patterns towards ag-
glomeration and periodicity, respectively. The R-index for 
the simulated periodic point distribution is close to, but not 
exactly equal to 2.149 since, in this case, the point distribu-
tion is embedded inside a square area instead of a hexagonal 
one. In turn, the aggregation index is R = 0.96, 1.01 and 1.03 
(close to the theoretical value 1.00) for the random point dis-
tribution, indicating its uniform, random nature.

Since the simulated clustered and periodic distributions 
have a Z-score much greater than 1.96 (see Section 3.5), both 
depart from the homogeneous, uniform random expectation, 
with a high statistical significance. As these distributions are 
neither perfectly agglomerated nor perfectly periodic, they 
have a certain degree or percentage of homogeneity, which 
correspond to ~49%, 58%, and 52% for the agglomerated pat-
terns and ~3%, 5%, and 9% for the periodic ones. For the 
simulated cluster distribution, the percentage of homogene-
ity was very high because despite the fact that the clusters 
are evident, there are local homogeneities in the distribution 
of points inside them. On the other hand, the percentage of 
homogeneity for the simulated periodic point distributions is 
low, since the only thing that prevents them from reaching 
R = 2.149 is that they are within a square instead of a hexag-
onal area.

The opposite occurs for the simulated random distribu-
tion, with a Z-score smaller than 1.96, meaning that the de-
parture from uniform random and homogeneous expectation 
is not statistically significant. According to these analyses, 
the simulated patterns are good representations of clustered, 
uniform random, and periodic point distributions for the dif-
ferent selected areas. They also serve as a practical example 
validating the use of the R-index in the determination of the 
homogeneity degree, the associated scale, and the tendency 
towards agglomeration, uniform randomness, or periodicity 
of crystal distribution in a 2D space.

5.2  |  Experimental crystal distributions

An important question that arises in studies of crystalliza-
tion in glasses that undergo internal nucleation is whether 
completely homogeneous nucleation can occur.18 Due to 
the apparent random disposition of the crystals in the vitre-
ous matrix, even a cursory visual inspection of the Li2Si2O5 
and Ba5Si8O21 crystal distributions in optical micrographs 
similar to those shown in Figures 4 and 5 suggests a high 
chemical homogeneity degree at the different analyzed 
magnifications (200×, 500×, 1000×, and 1500×). A con-
stant ρ, within the experimental error (Tables 3-6), is also 
an indication of homogeneity. Nevertheless, small depar-
tures from the perfect homogeneity cannot be discriminated 
by the bare eye, validating quantification methods such as 
the R-index.

For both systems, the R-index is close to 1, ranging from 
0.86 to 1.05 for Li2Si2O5 glass and from 0.92 to 0.97 for 
Ba5Si8O21 glass, depending on the micrograph magnifica-
tion. However, if the errors are taken into account, all these 
values are close to 1. Hence, these results indicate that the 
experimental distribution is indeed uniform, and this homo-
geneity is not significantly distinct in different scales, as seen 
by the different magnifications used. The reliability of these 
results is sustained by the Z-scores lower than the critical 
value of 1.96. Therefore, the crystal distributions are statisti-
cally equal to a perfect homogenous distribution, suggesting 

Parameters

Ba5Si8O21 (Tn = 988 K)

500× Error 1000× Error 1500× Error

N′ 172 13 40 7 14 4

A (×103 µm2) 42.50 0.98 9.10 0.72 3.02 0.52

Ρ (×10−3 µm−2) 4.04 0.40 4.39 1.12 4.64 2.12

r(µm) 7.63 0.51 7.17 0.88 7.29 1.35

r
E
 (µm) 7.88 0.31 7.65 0.56 7.58 0.82

R 0.97 0.10 0.94 0.18 0.96 0.28

var (R) (×10−4) 16.00 71.40 219

Z 0.79 0.76 0.28

T A B L E  6   Average values of N′, 
A, ρ, r, r

E
, R, var (R)and Z-score for the 

experimental distributions of the Ba5Si8O21 
crystals in the sample treated at Tn = 988 K 
for 10 min after edge correction
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complete spatial uniform randomness and the parent glasses' 
chemical homogeneity.

It is worth mentioning that, even though our analysis was 
carried out in a 2D space, the present conclusions are valid 
for the crystal distribution in a 3D glass matrix since the ob-
served bidimensional distributions are statistically represen-
tative samples of the system as a whole. Hence, any chemical 
inhomogeneity existing in the glass volume (3D) would be 
detected by our 2D analysis because the micrographs are sim-
ply cross-sections through the material's interior. An alter-
native analysis could be carried out by determining the 3D 
R-index directly if the experimental conditions allow it,40 for 
instance using transmitted light microscopy, or by inferring 
it from the 2D analysis employing a stereological correction. 
This type of correction permits calculating the volumetric 
crystal number density from the observed number in samples' 
cross-sections.30

Additionally, the results indicate that the implemented 
method of crushing and remelting the glass more than once 
can lead to chemically homogeneous samples. Nevertheless, 
there are other cases involving glasses having low melt vis-
cosity where the chemical homogeneity is already achieved 
with the first cycle and is not improved by increasing the 
number of crushing and remelting cycles.12

Finally, the current results show no evidence for the hy-
pothesis of crystal clustering, local heterogeneities that would 
be induced by an eventual formation of satellite-like crystals 
near previously existing ones, as suggested in a billion-atom 
molecular dynamic simulation of homogeneous nucleation in 
supercooled iron melt.18

6  |   SUMMARY

We tested a statistical method (R-index) to characterize 
the spatial crystal distribution and the associated degree 
of chemical homogeneity of partially crystalized glasses 
using Li2Si2O5 and Ba5Si8O21 as model materials. We 
found an R-index close to 1 for both glass-ceramics in all 
analyzed areas, showing that the crystals are uniformly 
and randomly distributed, corroborating the concept that 
nucleation is indeed a stochastic process.

Our results also confirm that the experimental method 
used for glass production at laboratory scale—melting/crush-
ing/remelting a few times—can lead to chemically homoge-
neous samples.

Finally, as none of the crystal distributions showed a ten-
dency towards agglomeration, we deny the hypothesis of 
the preferential formation of satellite-like crystals near pre-
viously existing ones, that is, the nucleation self-correlation 
conundrum.

On the whole, these results validate the R-index as an ef-
ficient parameter to evaluate the chemical homogeneity of 

glasses that undergo internal crystal nucleation, such as those 
used for glass-ceramic production.
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