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A B S T R A C T   

If the entropy extrapolation of supercooled liquids (SCL) suggested by Kauzmann was correct, then they would 
have the same entropy as their stable crystalline phase at a certain low temperature, below the laboratory glass 
transition (Tg), known as the Kauzmann temperature (TK). Extrapolating even further, the liquid entropy would 
be null at a temperature above absolute zero, violating the Third Law of Thermodynamics and constituting a 
paradox. Several possibilities have been proposed over the past 70 years to solve this paradox with different 
degrees of success. Our objective here is to access liquid dynamics at deep supercoolings to test the so-called 
crystallization solution to the paradox. By comparing the relaxation and crystallization kinetics determined 
above Tg and extrapolated down to TK, a possible solution would be that the crystallization time is shorter than 
the relaxation time, which would mean that a SCL cannot reach the TK. In this case, the liquid stability limit or 
kinetic spinodal temperature (Tks) should be higher than TK. We tested two fragile glass-forming liquids (diopside 
and wollastonite) and two strong liquids (silica and germania). For the fragile substances, Tks ≫ TK, hence such a 
supercooled liquid cannot exist at TK, and the entropy crisis is averted. On the other hand, the results for the 
strong liquids were inconclusive. We hope the findings of this work encourage researchers to further investigate 
the liquid dynamics of different strong glass-forming systems at deep supercoolings.   

1. Introduction 

To understand a paradox, one must comprehend a challenge inherent 
to its definition. Quine — an important American philosopher and 
logician — stated that a paradox is any supposedly strong argument 
whose conclusion is either false or absurd [1,2]. According to Quine, 
there are three different paradox classifications: veridical paradox, 
whose conclusion is inarguably true, no matter how absurd the argu
ment seems; intractable paradox, where the argument cannot convince 
the interlocutor if it is either true or false; and lastly, the falsidical 
paradox, whose conclusion is inevitably false, and a fallacy can be 
identified in its argument [2]. Interestingly enough, Quine wrote that an 
intractable paradox leads to a “crisis in thought that may change one’s 
perception of the reality at hand”. It is in one such paradox, proposed by 
Walter Kauzmann in the late 1940s [3], in which our interest lies. 

Kauzmann’s paradox is a seventy-year-old problem. By observing the 
thermal behavior of glass-forming liquids, such as lactic acid, glucose, 
and B2O3, he concluded that if their entropies were extrapolated in a 

certain way, they would nullify at a temperature higher than absolute 
zero, that is, if vitrification and crystallization could be averted on the 
cooling path [3]. This situation violates the Third Law of Thermody
namics, which raises the question of whether supercooled liquids can 
reach such deep supercoolings without vitrifying or crystallizing. Fig. 1a 
shows a schematic of Kauzmann’s extrapolation and the alleged 
paradox. 

The Kauzmann temperature (TK) of Fig. 1a can be calculated by 
solving Equation (1) for the temperature where the excess entropy Sexc is 
zero. 

Sexc(T)= Sliq(T) − Sc(T) = ΔSm +

∫T

Tm

Cp,liq(T) − Cp,c(T)
T

dT + ΔSphase (1) 

Sexc is the difference between the entropy of the supercooled liquid 
(Sliq) and the crystalline (Scrystal) phase. In Equation (1), the melting 
entropy, ΔSm, is defined as the ratio between the melting enthalpy and 
melting temperature; ΔSphase is the change in entropy related to all 
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phase transformations between T and Tm; and the symbols Cp,liq, and Cp, 

crystal correspond to the specific heat of the liquid and crystal, 
respectively. 

Even though it may be counter-intuitive for a liquid to have equal or 
lower specific heat or entropy than a crystal, this situation is not 
forbidden by thermodynamics. However, the actual paradox (or entropy 
catastrophe) arises when the liquid’s entropy is further extrapolated 
below the Kauzmann temperature in such a way that it nullifies at a 
positive temperature above absolute zero. 

This curious situation at TK was first called a paradox in 1977 
(approximately 30 years after Kauzmann’s paper) by Austen Angell [4]. 
Since then, several scientists have tackled this problem. 

Three main routes have been proposed for a possible solution to this 
paradox. The first formulates the concept of an “ideal” glass transition 
and is shown in Fig. 1b. This concept was proposed by Gibbs et al. [5] 
and then discussed by many authors, e.g. Refs. [4,6–8], it proposes a 
second-order phase transition at deep undercoolings below laboratory 
Tg, which was called T2 “where there is a drastic decrease in possible 
configurational states which may be due to relevant changes in kinetic 
properties” [5]. When cooling down a polymer, Gibbs et al. observed an 
increased density of low-energy molecular conformations followed by a 
reduction in the material’s volume, which translates to a decrease in 
possible configurational states. At T2, structural configurations no 
longer take place, and it was proposed that the material had reached its 
lowest configuration state, with a glassy structure. Gibbs went on trying 
to find how close T2 is to the glass transition temperature and his 
conclusion was that T2 is the absolute lower boundary for Tg [5]. In this 

case, the paradox would be averted because at T2, any supercooled 
liquid would vitrify, so there would be no SCL below it. Throughout the 
years, T2 came to be known as the ideal glass transition temperature, and 
its consequences are still discussed nowadays [6,7]. One of the problems 
with this argument is that it was proposed based on experimental 
observation of usual linear polymers, which are not usual characteristics 
of most glass-formers. 

In Fig. 1a, the temperature where the SCL relaxation curve meets the 
crystallization curve is the “kinetic spinodal” temperature, Tks, which 
was defined as the temperature where the average time for the first 
crystalline nucleus to appear is the same as the structural relaxation time 
of the SCL. In this article, we adapted this definition of TKS as being the 
temperature where the time to crystallize 0.0001% of the sample surface 
is equal to the Maxwell relaxation time. 

The second route to solve the paradox is by using a different 
extrapolation strategy for the SCL entropy. Approximately three decades 
after Gibb’s article, Stillinger et al. [8] tackled the ideal glass transition 
proposal by combining a thermodynamic landscape energy model with 
the relaxation kinetics of some glass-formers. In his study, Stillinger 
et al. questioned the existence of T2 for conventional glass-formers when 
taking into account the limited molecular weight of most substances and 
standard molecular interactions. Moreover, they suggested that Kauz
mann’s entropy extrapolation is too simplistic [8] and most likely, the 
SCL entropy could gradually approach a nil value at absolute zero, 
which would avert the paradoxical situation. They came to this 
conclusion by extrapolating the configuration entropy of the predomi
nant amorphous basin in a landscape energy model. 

Fig. 1. (a) Schematics of the paradox. The dashed 
yellow curve is a possible extrapolation of the SCL 
entropy proposed by Kauzmann. The circled temper
ature is where a violation of Thermodynamics would 
occur. Note that different extrapolations of the SCL 
entropy (not shown) may not yield a TK. For instance, 
it could gradually approach a nil value at absolute 
zero, which would avert the paradoxical situation; (b) 
The ideal glass transition solution to the paradox 
showing temperature T2, the lowest bound for Tg; (c) 
Schematics of the crystallization solution of the 
paradox; the orange curve represents the crystalliza
tion time, and the blue curve is the relaxation time. 
This was adapted from Ref. [9]. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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The third route to solve the paradox is the crystallization solution, 
proposed by Kauzmann himself [3]. This resolution postulates that there 
is a low-temperature limit for the existence of any SCL (a Tks) below 
which the crystallization kinetics is faster than the structural relaxation, 
thus the SCL state is denied. If this low-temperature limit is above TK, 
then Kauzmann’s entropy catastrophe would not exist, rendering it a 
falsidical paradox. Fig. 1c exemplifies this possibility. 

Here we are not discussing which would be the best way to extrap
olate the SCL entropy; or some other way to solve the paradox. Instead, 
we are only testing the crystallization solution for the paradoxical state 
that could happen using Kauzmann’s extrapolation route. We are 
interested in the dynamics of deeply supercooled glass-forming liquids. 
Hence, we investigate the crystallization solution for four oxide glass- 
forming substances. Our strategy involves three estimates: i) the tem
perature range where TK is expected to happen using the standard en
tropy extrapolation suggested by Kauzmann, ii) the characteristic 
relaxation time of these supercooled liquids in the TK range, iii) their 
crystallization time in the TK range. The paradox is avoided if the 
crystallization time is shorter than the structural relaxation time, and 
vice-versa. 

2. Literature review 

2.1. Tentative solutions to the Kauzmann Paradox 

One of the first authors to address the crystallization idea was 
Murthy [10] in 1990. He suggested that alpha and beta relaxations were 
responsible for different kinetic processes below a certain temperature 
Tc (which is approximately 1.25 Tg) for atactic polymers. By combining 
adiabatic calorimetry with NMR and the splitting of these two relaxation 
processes at Tc, Murthy proposed that a liquid-liquid transition occurs 
around Tc. This transition is responsible for the aggregation of amor
phous molecule clusters surrounded by a “quasi-gaseous” liquid on the 
surface of nuclei (that cannot grow due to poor packing of molecules, 
side chains with high molecular mass, etc.), and this clustering is a direct 
result of the system seeking for an alternative to crystallization to lower 
its free energy [10]. If correct, this amorphous clustering hinders the 
possibility of crystallization at deep supercoolings as the existing nuclei 
cannot initiate growth. Then, the crystallization hypothesis for the 
Kauzmann paradox would be nullified. This study was related to atactic 
polymers and since then the understanding of relaxation-related phe
nomena has greatly improved in the wider glass community. 

Tanaka’s pioneer study published in 2003 [11] provides a brief re
view about possible resolutions for the paradox while focusing on the 
supercooled liquid stability at deep undercoolings, that is, the hypoth
esis tested in this work. By comparing relaxation times with crystalli
zation times, using the Classical Nucleation Theory (CNT) [12] and the 
Vogel–Fulcher–Tamman (VFT) viscosity equation [13–15] (which likely 
overestimates the viscosity and related relaxation times at temperatures 
below Tg), Tanaka concluded that the crystallization time for a metallic 
glass former (Zr41.2Ti13.8Cu12.5Ni10.0Be22.5) is shorter than the relaxa
tion time at the Kauzmann temperature, thus denying the paradox. He 
also showed a characteristic temperature, entitled temperature of lower 
metastable limit (TLML), which is above TK for his metallic substance 
where the structural relaxation time is equal to the crystallization time 
[11]. It should be noted that the extrapolations performed in Tanaka’s 
work cover a short temperature range, as TLML is around 600 K that is 
only 20 K below the laboratory glass transition temperature of the 
investigated system, for which the extrapolations were much shorter 
than for the current oxide glasses. In this case, TMLL was below the 
breakdown temperature of the Stokes–Einstein relation. The problem 
with this work is the use of the VFT equation for viscosity, which only 
gives an upper bound for the relaxation times. 

Mitrofanov et al. [16] tackled the paradox by investigating the 
high-frequency shear modulus relaxation related to defect formation 
near and well below Tg. Using a preannealed Pd40Cu30Ni10P20 metallic 

glass, they found indications of a metastable limit below Tg for the 
supercooled liquid. Preannealing was done at a certain temperature so 
that the glass became less defective and therefore, more ordered than 
what was expected at the temperature of metastable equilibrium. By 
observing a decrease in the shear-modulus (which is a consequence of a 
starting ordered state moving towards a metastable equilibrium) and 
correlating this decrease with what would be expected at an annealing 
temperature, they could infer that the system was reaching a so-called 
metastable limit. Then, it was named Kauzmann pseudocritical tem
perature Tpc, below which a SCL cannot exist, and this temperature is 
above TK. Therefore, this particular supercooled liquid cannot exist 
below this temperature, thus raising a question mark about the paradox. 

The idea of a metastable limit was also tackled by Cavagna et al. 
[17], who called it kinetic spinodal temperature (Tks). It is a temperature 
below the laboratory glass transition range where the structural relax
ation time exceeds the time necessary to form the first critical nucleus, 
hence the supercooled liquid no longer exists. Through theoretical 
evaluation, combining the concept of the Stokes–Einstein breakdown 
[18] with the Classical Nucleation Theory, Cavagna et al. came to the 
same conclusion as Tanaka: the entropy crisis is avoided by inevitable 
crystallization at a temperature higher than the Kauzmann temperature. 
This result was obtained through a theoretical evaluation for 
glass-formers in general. 

Saika-Voivod et al. [19] addressed the paradox searching for the 
crystallization limit, which they called homogeneous nucleation limit 
(HNL). By using molecular dynamic simulations for a highly pressurized 
silica system, once again the authors came to the same conclusion that 
the Stokes–Einstein relation breakdown leads to the existence of an HNL 
above TK. It is also worth noting that their study reveals that the absence 
of the Stokes–Einstein breakdown would presuppose the existence of a 
supercooled liquid at the Kauzmann temperature. 

Zanotto and Cassar [9] addressed Kauzmann’s paradox in a study of 
two homogeneous nucleating fragile glasses, lithium disilicate and 
diborate, by comparing extrapolations of experimental relaxation and 
nucleation time data down to TK. They found that at the TK range, the 
predicted nucleation times are indeed shorter than the relaxation times, 
thus denying the existence of the paradox. In summary, refs. [9,11,16, 
17,19] suggested that the breakdown of the Stokes–Einstein rela
tion–observed in their studied materials–is fundamental for the validity 
of the “crystallization” solution of the paradox. 

Martin and Hou [66] observed that many substances—most of them 
organic—have a temperature where the RT normalized free energies of 
crystallization and of relaxation are the same, making the probability of 
crystallization the same as the probability of relaxation. Their analysis 
showed that this equivalence temperature happens above the Kauzmann 
temperature and their analysis was supported by the Transition Zone 
Theory proposed in 2015 by Hou et al. [67]. While their work was not 
focused on the crystallization solution of the Kauzmann Paradox, their 
observations support this hypothesis. 

A search on the Scopus database yields more than 400 papers 
referring to Kauzmann’s paradox, and many of these have attempted to 
find a solution or a fallacy in the argument. The disturbance and 
excitement that Kauzmann’s paradox brought to the glass community 
should be evident to the reader by now. Furthermore, the “quest” con
tinues. For instance, more recently, in 2021, Separdar et al. [20], and 
Rino et al. [21] used molecular dynamics simulations to test the crys
tallization solution in supercooled zinc selenide and barium sulfide 
liquids, respectively. Both studies compared structural relaxation times 
with nucleation times and reached the same conclusion: the kinetic 
spinodal temperatures are significantly higher than the TK, thus averting 
the paradox. 

2.2. Viscosity of glass-forming liquids 

Due to their reasonable description of experimental data [22], the 
two viscosity models utilized in this study are the 
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Vogel–Fulcher–Tammann (VFT, Equation (2)) and the Avra
mov–Milchev (AM, Equation (3)). Note that the MYEGA viscosity model 
is reported to give the best overall description of viscosity data of 
glass-forming liquids [23]; however, in the region of direct interest to 
this work, at very deep supercoolings (T ≪ Tg), due to the lack of 
experimental data, there is still a debate regarding which model best 
describes the experimental data [6]. Furthermore, there is plenty of 
evidence that the AM and VFT models correspond to lower and upper 
bounds of viscosity, respectively [24]. Hence, they will be used here to 
bracket the low-temperature viscosity behavior (and related relaxation 
times), where the Kauzmann crisis is supposed to be located. 

The viscosities of the glass-forming liquids analyzed in this study are 
presented in Fig. 2. Silica (m = 18) and germania (m = 18) represent 
strong liquids, which show almost Arrhenian viscosities, whereas 
wollastonite (m = 61) and diopside (m = 59) are fragile liquids. It should 
be pointed out that here we are investigating type I silica and even then, 
a difference of about two orders of magnitude in viscosity data of 
different silica I glass samples are shown in Fig. 4. Thus, upper and lower 
boundary datasets for silica’s viscosity were treated separately. 

η(T)= η∞10

(
AVFT
T − T0

)

(2)  

η(T)= η∞exp
(

θ
T

)αAM

(3)  

2.3. Relaxation 

Relaxation is an intrinsic process of the vitreous state. It is defined as 
a time-dependent irreversible process that results in a change from an 
initial state towards another of lower energy [36–38] without a phase 
change. Structural relaxation is related to the cooperative movement of 
structural groups of the glassy network leading to a global modification. 

In this paper, we estimate the relaxation times by combining 
experimental viscosity data with the Maxwell relation (Equation (4)) 
[39,40]. The Maxwell relation is based on relaxation experiments when 
a viscoelastic system is submitted to external stress that gradually dis
sipates with time; or on creep experiments, where a constant load results 
in a low strain rate. The characteristic relaxation time is obtained from 
the following equation: 

τrelax =
η(T)
G∞

(4)  

where τrelax corresponds to the relaxation time, and G∞ is the liquid’s 
shear modulus measured at an infinitely high frequency, hence, practi
cally it does not vary with temperature. 

By estimating the stress relaxation time of a glass-former by Maxell’s 
expression, recent evidence, refs. [39,40], shows that the structural 
relaxation time (the property of interest in this work) is longer, as Eq. (4) 
only gives a lower bound for the structural relaxation time. 

2.4. Crystallization 

Crystallization is a two-stage phenomenon that involves crystal 
nucleation and growth. Nucleation takes place as the kinetic barrier — 
related to the rupture of chemical bonds in the SCL, atomic displace
ment, and attachment to the crystal nucleus — and the thermodynamic 
barrier necessary to form a stable crystalline nucleus are transposed. 
Nucleation can be classified as homogeneous when the probability of 
nucleus formation is uniform within all the volume of the material, or 
heterogeneous when there are favorable sites with higher nucleation 
probability [12,41]. Here we will focus on materials that pertain to the 
latter group, assuming extreme conditions of only a single heteroge
neous site per square meter and 1010 sites per square meter [42]. As soon 
as the first stable crystalline nucleus forms below the liquidus temper
ature, the non-crystalline material is considered unstable against crys
tallization because any volumetric increase of the critical nucleus is 
thermodynamically favorable, then crystal growth takes place sponta
neously. A further explanation of the intricacies of this phenomenon can 
be found in Refs. [12,41]. 

Fig. 3 shows the growth velocities assessed by different authors for 
the glass-forming systems studied in this paper. Such data will be used 
for our extrapolations of crystallization times down to the expected TK 
range. Once more, silica glass shows a variance similar to that observed 
in the viscosity dataset. The difference of about two orders of magnitude 
in the data from different authors indicated that we should separate 
them into maximum and minimum datasets, which will be analyzed 
independently. 

Another interesting phenomenon of glass-forming liquids is the 
decoupling observed in fragile substances, i.e., the temperature where 
the crystal growth kinetics deviate from the theoretical predictions using 
viscosity as a proxy for diffusivity. This is also called the breakdown of 
the Stokes–Einstein relation between diffusivity and viscosity. For 
further explanations on this subject, please refer to Ref. [35]. Below the 
decoupling or breakdown temperature, it is often assumed that fragile 
and strong liquids have Arrhenian growth velocities. Hence, we will use 
this form for the extrapolation of growth velocities down to TK. It is 

Fig. 2. Viscosity versus temperature for diopside, wollastonite, silica, and 
germania. This plot was made using experimental data measured by different 
authors [25–35]. 

Fig. 3. Crystal growth velocity datasets for the four glass-forming systems 
focused on in this work. Data from Refs. [29,35,43–49]. 
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worth noting that the concept of decoupling between crystallization and 
relaxation kinetics was recently challenged by Martin et al. [68]. They 
argue that “the entropic contribution to the free energy of activation of 
relaxation and the enthalpic barriers of both crystallization and relax
ation all exhibit a common shape” [68]. In their analysis, they conclude 
that crystallization and relaxation are not coupled at all in any tem
perature range. 

Finally, the JMAK Equation (5) computes the surface crystallized 
fraction as a function of the number of heterogeneous nucleation sites 
and crystal growth velocity, U [50]. Equation (5) refers to the 
two-dimensional case. 

α= 1 − exp
(
− gNU2tcr

2), (5)  

where α is the crystallized surface fraction, g is related to the geometry of 
the crystal, N is the average number of available surface sites for crystal 
nucleation per square meter, and tcr, the time to crystallize a pre- 
determined α. This particular form is used here because heterogeneous 
surface nucleation is the crystallization mechanism for the 4 glasses that 
were studied. They show platelike or circular-shaped crystals, and N 
should be the same for samples with the same surface finish [42]. 

3. Methodology 

3.1. Estimating the Kauzmann temperature range 

The Kauzmann temperature was computed using Equation (1). 
Because we are using a linear extrapolation of Cp,liq, our calculations 

give an upper bound of the Kauzmann temperature. Cp,liq must be zero at 
zero Kelvin, however not enough data is available for a safe extrapola
tion other than linear that satisfies the requirement Cp,liq(0 K) = 0. 

Computing the Kauzmann temperature requires extrapolation of the 
heat capacity of the SCL to temperatures significantly below Tg, which 
are experimentally inaccessible. We used a sampling technique to 
evaluate how sensitive TK is to small deviations in the physical proper
ties involved in its calculation. To this end, we sampled five values 
following a normal probability density function with the mean standard 
deviations shown in Table 1. These values were then used to compute 
the underlined version of the parameters following the conversion 
shown in the rightmost column of Table 1. We computed TK using these 
parameters. By repeating this sampling-and-calculation process 1,000 
times, we obtained a distribution of TK values. Thus, we defined the 
upper TK range as the values comprehended between the 16.5% and 
83.5% percentiles (67% of the data). 

Crystalline phase transformations are reported for wollastonite, sil
ica, and germania, and the entropy of these transformations was taken 
into account when computing TK. Wollastonite changes to pseudo- 
wollastonite at 1398 K with an increase of 4.2 J/mol.K in entropy. Sil
ica has two allotropic phase transformations: from α- to β-quartz at 847 
K, with a ΔSphase = 728 J/mol.K, and from β-quartz to cristobalite at 
1079 K with ΔSphase = 8920 J/mol.K. According to Richet, germania’s 
inversion from tetragonal to hexagonal takes place at around 1335 K, 
with divergent values measured by different authors; its transition 
enthalpy is approximately 23 kJ/mol [51–57]. Other relevant thermo
dynamic parameters used in this work are reported in Table B.1 in the 
Appendix. 

3.2. Estimating the relaxation time in the TK range 

Similar to the Kauzmann temperature, as equilibrium shear viscosity 
data are not available far below the glass transition temperature, 
computing the shear relaxation time in the TK range also requires 
extrapolation. Then, by combining extrapolated viscosity data with the 
Maxwell relation, we obtained the shear relaxation time. The analysis 
then proceeded by knowing that the shear relaxation sets a lower 
boundary for structural relaxation, which is supported by recent publi
cations [39,40] for experimental data near the glass transition 
temperature. 

Here we quantified the uncertainty of this extrapolation by means of 
bootstrap sampling, which is a well-known statistical technique 
[58–60]. The first step is to sample by repositioning a given experi
mental viscosity dataset N times, where N is the size of the dataset. Then, 
the VFT and AM viscosity equations are fitted to this sampled bootstrap 
dataset. The fitted parameters of these equations are stored. This process 
was done 10,000 times for each viscosity dataset. To be clear, a viscosity 
dataset is a set of (temperature, viscosity) tuples for a particular liquid. 
Note that silica has two viscosity datasets because we divided it into the 
upper and lower boundaries of viscosity. 

With all the fitted equations for a particular viscosity model and 
viscosity dataset, we computed the range that comprehended 67% of the 
fitted equations. We used this bootstrapping technique to estimate the 
errors associated with extrapolating data down to the Kauzmann tem
perature; these errors are not usually explored in the literature. 

The fitting procedure of the VFT equation merits additional com
ments. We restricted the value of the divergence temperature (T0) to be 
greater than or equal to zero (T0 ≥ 0). When a VFT regression yielded T0 
= 0, the fit was redone using an Arrhenian equation (obtained by fixing 
T0 = 0 in the VFT expression). The rationale for this procedure is that 
nonlinear regressions with restrictions show higher errors when one or 
more of the fitting parameters are close to the restriction limits. Finally, 
we considered η(T < T0) = ∞ when computing the confidence bands of 
VFT. 

Fig. 4. Schematics of the crystallization solution of the Kauzmann paradox; the 
crystallization time is shorter than the relaxation time in the TK range. The blue 
curve represents the shortest relaxation time, given by the Maxwell relation and 
the lower boundary from the AM equation used here; whereas the orange curve 
is the longest crystallization time, given by inserting N = 1 site/m2 in the JMAK 
equation. The gray vertical dashed line corresponds to the upper bound of the 
TK range, and the gray solid line to the lowest kinetic spinodal temperature. All 
these conditions were used in this work. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
Parameters related to the sampling strategy used to understand how sensitive 
the distribution of TK. is with respect to small uncertainties in the physical pa
rameters used to compute this temperature.  

Parameter Mean Standard Deviation (%) Conversion 

δTm  1 0.5 Tm = TmδTm  

δΔHm  1 5 ΔHm = ΔHmδΔHm  

δΔSphase  1 5 ΔSphase = ΔSphaseδΔSphase  

δCp,liq  1 0.5 Cp,liq(T) = Cp,lip(T)δCp,lip  

δCp,c  1 0.5 Cp,c(T) = Cp,c(T)δCp,c   
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3.3. Estimating the crystallization time in the TK range 

Crystal growth depends on both thermodynamics and kinetics, usu
ally having a maximum velocity close to the melting temperature. Below 
the breakdown or decoupling temperature (Td ~ 1.2Tg) [61], the ki
netics of crystal growth seems to follow an Arrhenian temperature 
dependence for numerous glass-formers. In this work, we are interested 
in the behavior of liquids at deep supercooling well below the laboratory 
glass transition temperature, Tg. We will then proceed by assuming 
Arrhenian crystal growth velocities. This hypothesis holds for fragile 
liquids, for which there is evidence on the existence of the decoupling (e. 
g., diopside), and for strong liquids (e.g., silica and germania) [35], 
which do not show the decoupling; they are Arrhenian throughout. 
However, this hypothesis is weaker for wollastonite for which there is 
not enough data to observe the decoupling. This decoupling assumption 

would result in a lower bound of the crystallization times at TK if the 
decoupled crystal growth regimen was not reached. However, we stress 
that all the fragile liquids tested so far show a Td [24]. 

Silica’s experimental crystal growth data was treated differently. 
Minimal compositional differences in silica glass heavily affect the 
diffusion kinetics, which then influences the viscosity and crystallization 
— even though we are restricting our analysis to type I silica. Fig. 3 
shows upper and lower bounds for silica’s crystal growth rates. These 
two cases were treated separately. A similar bootstrapping procedure to 
that discussed in Section 3.2 was used to estimate the uncertainties and 
to extrapolate these crystal growth rates. 

As mentioned previously, we used the JMAK equation to compute 
the crystallization time at TK. In this analysis, we are assuming N = 1 
site/m2; an extremely low crystallized surface fraction, α* = 10− 6, so 
that the material is no longer a glass for any α > α* = 10− 6 and g = π, 

Fig. 5. Kauzmann temperature distribution for the four glass-formers analyzed. The black dashed lines delimitate the 67% TK range, which was used as upper and 
lower boundaries. 
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(circular superficial crystals). It should be stressed that this value of N =
1 site/m2 is an absolute lower bound that overestimates the crystalli
zation times at the Kauzmann temperature. The lowest boundary for the 
crystallization time may be assessed by computing the maximum num
ber of sites, N = 1010 sites/m2 [42]. We will further dwell on this subject 
in Section 4.2. The crystallization time is given by 

tcr
2 =

ln(1 − α)
− gN*U2

(1)  

3.4. Testing the crystallization solution of the Kauzmann paradox 

The crystallization solution of the Kauzmann paradox can be tested 
by comparing the crystallization time with the relaxation time in the 
Kauzmann temperature range. The three possible outcomes are:  

a) The crystallization time is shorter than the relaxation time, and 
therefore the material crystallizes before relaxing.  

b) The crystallization time is longer than the relaxation time, and 
therefore the material relaxes before crystallization starts. 

c) There is an overlap of crystallization and relaxation times. The ma
terial relaxes and crystallizes at comparable time frames. 

If the calculations performed in this work give reasonable estimates, 
then the Kauzmann temperature cannot be reached by the SCLs in this 
framework only if condition a) holds. If conditions b) or c) hold, then 
further investigations would be required for a conclusion regarding 
Kauzmann’s entropy crisis. Fig. 4 exemplifies condition a). 

We should stress once more and summarize the conditions used in 
the analyses and how they play against the tested hypothesis using a 
schematic plot, Fig. 4. First, the estimated TK (gray dashed line) is above 
the actual Kauzmann temperature due to the approximation of Cp,scl 
being constant down to 0 K,favoring relaxation over crystallization. The 
assumption N = 1 site/m2 results in the longest crystallization time 
(orange dashed curve). The calculated shear relaxation time (blue 
dashed curve) gives a lower bound to the structural relaxation time. The 
same condition applies to the use of the AM equation, which sets the 
shortest relaxation time. Then, this combination yields the lowest Tks 
(solid gray line). This is the worst possible situation because any other 
combination would switch Tks to a higher temperature closer to Tg, 
widening the distance between TK and Tks and favoring the solution of 
the paradox. 

4. Results and discussion 

4.1. Estimating the Kauzmann temperature range 

The plots in Fig. 5 show a histogram of the Kauzmann temperature 
distribution for the four glass-formers studied (diopside, wollastonite, 
silica, and germania), according to the methodology explained in Sec
tion 3.1. The percentiles 16.5% and 83.5% are shown as black dashed 
lines, comprehending 67% of the data. The computed mode, median, 
and mean values from the Kauzmann temperature distributions are 
summarized in Table 2. 

Three glass-formers show a unimodal Kauzmann temperature dis
tribution whereas the silica histogram has a small peak far apart at 
around 900 K, which is explained by its Kauzmann temperature being 

close to one of its phase transformations. The lack of symmetry of a 
distribution curve can be evaluated by its skewness so that a standard 
normal distribution has zero skewness. The diopside, wollastonite, and 
germania distributions have small skewness, between 0.13 and 0.22, 
resembling a normal distribution. Silica’s TK distribution, on the other 
side, has a skewness of − 1.7, which results from the peak at 900 K. 

Diopside’s Kauzmann temperature distribution has its mode at 636 K 
and its median at 644 K, which is about 360 K below its glass transition 
temperature (Tg = 1000 K). The TK range obtained for diopside stands 
between 616 K and 674 K, which is a difference of 58 K. 

Wollastonite’s Kauzmann temperature distribution exhibits a mode 
of 446 K and a median of 441 K. These values are almost 600 K below its 
laboratory Tg of 1030 K. Therefore, the extrapolations needed for the 
wollastonite analysis are much greater than those of the diopside. 
Greater extrapolations are associated with higher uncertainty, and that 
is why the bootstrapping technique is important for this study. The 67% 
interval for wollastonite’s TK is between 421 K and 462 K. 

The TK distribution of silica has its mode at 1156 K and median equal 
to 1180 K, which is only 170 K below its Tg. This is the lowest under
cooling of all the four glass-formers. This result translates into smaller 
extrapolations and consequently, smaller associated errors. The Kauz
mann temperature range for silica stands between 1137 K and 1220 K. 

Finally, germania exhibits the deepest supercooling, since the mode 
and median are 142 K and 144 K, respectively, while its glass transition 
temperature is approximately 820 K. We are dealing with a 681 K 
undercooling, which results in massive extrapolations and substantial 
uncertainly. Another issue with germania is that the Kauzmann tem
perature range is far too close to absolute zero, where the linear 
extrapolation of Cp,liq has a high probability of being wrong (see next 
paragraph). 

It is very important to recall that these estimated Kauzmann tem
peratures are, in fact, upper boundaries. This happens because Cp,liq 
should be zero at absolute zero, but this was not the case here because 
we extrapolated the liquid’s heat capacity from a linear regression of the 
available experimental data above Tg. 

4.2. Analyzing the paradox 

We now test whether all studied supercooled liquids would show a 
kinetic spinodal temperature before reaching the Kauzmann tempera
ture, i.e., if Tks > TK. If this hypothesis is proven true, there would be no 
SCL below TKS, and the entropy crisis would be avoided. 

Table 2 
Measures of central tendency for the temperature distribution plots.   

Mean (K) Mode (K) Median (K) Tg - TK,mean (K) 

Diopside 645 ± 29 636 644 355 
Wollastonite 441 ± 21 446 441 589 
Silica 1177 ± 50 1156 1180 173 
Germania 144 ± 6 142 144 676  

Fig. 6. Crystallization and relaxation times summary for diopside liquid using 
N = 1 site/m2. 
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4.2.1. Fragile liquids 
Figs. 6 and 7 show the relaxation and crystallization kinetics for 

diopside and wollastonite, respectively. Their estimated kinetic spinodal 
temperature ranges are indeed significantly higher than the Kauzmann 
temperature range. One curious observation is that the wollastonite 
kinetic spinodal temperature is reasonably close to the laboratory glass 
transition. In both cases, the SCLs are predicted to crystallize well before 
they relax at TK, thus avoiding the entropy crisis. 

Three points that make our conclusions even safer are: i) the esti
mated Kauzmann temperature range is an upper boundary, hence in the 
actual TK the crystallization times would be even shorter than the 
relaxation times; ii) the structural relaxation times are longer than the 
shear relaxation times estimated here; ii) using the minimum possible 
value of surface nucleation sites, N = 1 site/m2, results in the longest 
possible crystallization times. Therefore, these conditions play against 
the “crystallization” solution, leading to longer crystallization times and 
shorter relaxation times, hence they corroborate our conclusions. 

4.2.2. Strong liquids 
Fig. 8 presents the relaxation and crystallization kinetic plots for 

high-purity silica glass with the same considerations used to draw Figs. 6 
and 7. In this case, the Tks range and the TK range coincide. This means 
that SCL silica may reach its Kauzmann temperature but cannot be 
cooled far below it without crystallizing. As the entropy crisis is actually 
below TK, and we are considering the “safe” strategy used in this analysis 
(presented in the previous section for fragile liquids), it is thus unlikely 
that this high-purity silica can reach the paradoxical state. 

Fig. 9 paints a different picture for low-purity silica of the same type 
I, where the SCL can reach the TK range without crystallizing since the 
crystallization times are about six orders of magnitude longer than the 
relaxation time at upper TK (comparing the lowest tcr curve with the 
highest τrelax from the VFT equation). Hence, this material does not 
support the crystallization solution. Low-purity silica has a slightly 
broken vitreous network (with more non-bridging oxygens), which 
heavily affects its kinetic properties, such as viscosity and crystalliza
tion. This result is not altered if we change the value of N to a much 
higher value of 1010 nucleation sites per square meter (not shown), 

Fig. 7. Summary of crystallization and relaxation times for wollastonite liquid 
using N = 1 site/m2. 

Fig. 8. Crystallization and relaxation times summary for high-purity silica 
(combining the highest viscosities with lowest crystal growth datasets) using N 
= 1 site/m2. 

Fig. 9. Crystallization and relaxation times summary for low-purity silica 
combining the lowest viscosities with the highest crystal growth datasets using 
N = 1 site/m2. 

Fig. 10. Crystallization and relaxation times summary for germania using N =
1 site/m2. 
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which is a physically reasonable value for N. 
However, it is interesting to note that, in this particular case, since 

the predicted Kauzmann temperature (the upper limit) is close to the 
glass transition temperature range, we argue that it may be possible to 
determine new crystallization and relaxation experimental points, using 
samples of the same silica glass batch, to clarify this apparent duality 
presented by similar glasses having the same nominal composition but 
different impurity levels. This is an interesting topic for future research 
work. 

The analysis for germania (Fig. 10) is also inconclusive as the crys
tallization bands are contained within the relaxation bands in the TK 
range. Hence, they are similar to those of the high-purity silica. More
over, this result does not change if we increase the value of N to 1010 

nucleation sites per square meter. However, the picture would change if 
any of the upper and lower boundaries change. For instance, the actual 
Kauzmann temperature range of germania is probably lower than the 
estimated range due to it being far too close to absolute zero where the 
extrapolation of the heat capacity of the liquid has most probably 
departed from linear. Additionally, the structural relaxation time is 
longer than the stress relaxation time that we computed. These two 
factors could lead to a different conclusion where the crystallization 
solution to the paradox could hold for germania. Keeping in mind that 
due to the extreme nature of these extrapolations and lack of experi
mental data on structural relaxation, drawing a firmer conclusion is 
impossible, as it would dwell too much on the realm of speculation. 

As it stands now, it is quite clear that fragile liquids crystallize well 
before reaching the Kauzmann temperature due to their super- 
Arrhenian increase of relaxation times below Tg. This finding corrobo
rates the conclusions of refs. [9,11,16,17,19] in their studies with other 
substances using different approaches. They have all observed that it is 
the breakdown of the Stokes–Einstein relation of fragile liquids that 
allows for the “crystallization” solution of the paradox. 

Regarding the strong liquids, a mystery remains for supercooled 
liquid germania and silica regarding whether they can or cannot reach 
their Kauzmann temperatures. Further advances on MD simulations, 
such as those presented by Rino et al. [20,21], could lead to a more 
conclusive solution for these glass-formers since both have been exten
sively studied by molecular dynamic simulations. Therefore, we specu
late that silica and germania may satisfy the crystallization solution due 
to the following combined effects: i) structural relaxation being slower 
than the shear relaxation used in the current work, ii) using the AM 
model gives a lower bound for viscosity and relaxation times, iii) a much 
shorter crystallization time if a higher value of N is considered, and iv) a 
lower Kauzmann temperature due to the nonlinearity of the actual liquid 
heat capacity at lower temperatures. However, we stress that owing to 
the extreme extrapolations necessary for studying these materials, the 
situation at TK is still unclear for these strong liquids. 

Our results differ from the conclusion of Murthy [10] who concluded 
that liquid glass-formers (atactic polymers in his case) cannot crystallize 
below a threshold temperature, which is around 1.25 Tg. On the other 
hand, we demonstrated previously that diopside and wollastonite, both 
being fragile liquids, support Tanaka’s and Cavagna et al. hypotheses 
[11,17] by showing that the crystallization times are shorter than the 
relaxation times for both systems at temperatures below the glass 
transition. Tanaka suggested that dynamic heterogeneities are the 
reason behind this result: stronger liquids are more homogeneous 
dynamically, which means that they have a much narrower distribution 
of cooperative rearranging region sizes. Thus, strong liquids are more 
difficult to crystallize than fragile liquids below Tg, which could explain 
our results for germania and silica. Cavagna and colleagues reached the 
same conclusion as Tanaka: the entropy crisis is avoided by inevitable 
crystallization at a temperature higher than the Kauzmann temperature. 
They demonstrate that this situation happens due to the breakdown of 
the Stokes–Einstein relation. 

Saika-Voivod et al. [19] also found that the Stokes–Einstein relation 

breakdown leads to the existence of the homogeneous nucleation limit 
at deep undercoolings above TK, which supports the results obtained by 
the previous authors. As discussed before, the homogeneous nucleation 
limit presented by these authors has a similar definition as the kinetic 
spinodal temperature. 

Cassar et al. [9], who addressed the paradox in a similar way as we 
did, revealed that lithium disilicate and lithium diborate (both fragile 
glass-formers) also crystallize before reaching the Kauzmann tempera
ture, thus avoiding the paradox, such as the fragile liquids analyzed 
here. The same conclusion was obtained recently through MD simula
tions in a BaS [20] and in a ZnSe liquid [21]. Both studies found a Tks 
higher than the TK. 

Combining our results with these previous results further advances 
the comprehension of the paradox. Ours corroborates past studies that 
investigated other fragile glass-formers: all the supercooled liquid stud
ied should crystallize before relaxing at TK, leading to a closer end for 
the paradox. However, the crystallization solution to the paradox still 
stands for strong liquids. Finally, the results for vitreous silica encourage 
glass researchers to actually measure these properties at low tempera
tures in these glasses, since the estimated Kauzmann temperature (upper 
bound) is not far from the laboratory Tg. 

5. Conclusions 

In this work, we extrapolated kinetic data obtained above the Tg 
range down to inaccessible low temperatures with statistical rigor. These 
extrapolations gave an educated estimate of relaxation and crystalliza
tion times to shed light on the dynamics of deeply supercooled liquids in 
the Kauzmann region. 

The two fragile liquids studied here (diopside and wollastonite) 
crystallize earlier than they relax at low temperatures much before 
reaching TK, thus averting the entropy crisis predicted by Kauzmann. 
These fragile liquids present the breakdown of the Stokes–Einstein 
relation, which seems to be a condition necessary to support the crys
tallization solution. Our results corroborate the conclusions of previous 
authors that used other approaches and different fragile liquids. 

However, our investigations for strong glasses were inconclusive. 
Using an impure silica glass, the paradox remains as the crystallization 
times at TK are about six orders of magnitude longer than the relaxation 
times. On the other hand, estimates for high-purity silica have shown 
that the crystallization times are similar to the relaxation times at TK, 
hence further extrapolations indicate that the SCL cannot exist below TK, 
and the Kauzmann paradox is denied. It is interesting that confirmation 
of these results could (perhaps) be obtained by experimentally 
measuring the relaxation and crystallization kinetics in impure silica 
below Tg. This strategy may be possible due to the fact that the estimated 
Kauzmann temperature range (upper bound) and the experimental Tg 
are not far. Finally, the second strong glass, germania, also yielded an 
inconclusive result as at TK, its crystallization time bands stand between 
the relaxation time curves. 

These results advance the existing knowledge about the dynamics of 
deeply supercooled glass-forming liquids. The procedure we used here 
to analyze the crystallization solution of the paradox and will hopefully 
incite other researchers to conduct similar assessments with different 
strong liquids for a definitive solution to this resilient problem in glass 
science. 
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Appendix  

A. Influence of induction times for growth 

The induction time for crystal growth, τgrowth, is obtained through an extrapolated linear regression of the crystalline layer growth, as shown in 
Fig. A1. There are literature data for diopside and wollastonite glasses, from where we could obtain the τgrowth versus temperature. These results are 
displayed in Fig. A2 with linear regression.

Fig. A1. Crystalline layer thickness versus time for a diopside glass at 1053 K. The induction time for growth is obtained via linear regression of the experi
mental data. 

Fig. A2. Induction times for growth estimated for diopside and wollastonite glasses at several temperatures. The red dashed lines represent linear regressions.  

The experimental data for the induction times for growth presented in Fig. A2 does not have a clear trend for these two glass-formers. Then, to 
study how this induction time could affect our analysis of the crystallization times, a linear regression (Equations A.1 and A.2) was used as an 
estimation for the extrapolation for a very low temperature below Tg: 

Diopside: y= 30.57 − 0.024x (A.1)  

Wollastonite: y= 29.74 − 0.023x (A.2) 

The introduction of the induction time for growth into the analysis was made through the JMAK equation, which was reformulated as shown by 
Equation (8). 
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α= 1 − exp
(
− gN * U2 *

(
tcr − τgrowth

)2
)

(8) 

Instead of dealing with yet another extrapolation, we compared which would be the induction time for growth at the TK range required for the SCL 
to relax before it crystallizes. 

The upper boundary for TK for diopside glass was 674 K. At this temperature, the relaxation time (obtained from the AM and the Maxwell 
equations) was around 1038 s. If we look at Equation (8), it is clear that the induction time for growth plays against the crystallization time that we used 
in our analysis. For the crystallization time to be equal to or higher than the relaxation time at TK, it should be in the order of 1038 s. The introduction of 
the induction times for growth into the JMAK equation does not affect the resulting tcr, which still stands at the same order of 1019 s for the diopside. 
The effect of the induction time for growth seems to be irrelevant to this analysis. 

If we perform the same analysis for wollastonite, the same controversial situation is found: the induction time for growth would have to be in the 
order of 10295 s. Thus, it is safe to say that the induction time for growth plays no role in this analysis of the paradox. However, further investigation is 
required to better understand the parameters involved in the growth of the very first crystalline nucleus in a liquid system.  

B. Thermodynamic parameters   

Table B.1 
All thermodynamic parameters used in the analyses. The specific heat of solids (Cp, solid) assumes the following form Cp,solid = a+ bT + cT2 + dT3 −

e/T0.5 − f/T2.  

Thermodynamic  

1. Diopside Value Ref 
Tg 1000 K [25] 
Tm 1664 K [26,27,51–54,57,62] 
ΔSm 82.5 J/mol 
ΔSphase none 
Cp,liquid (1019 to 1811 K) 334.6 J/mol.K (from 1019 to 1811 K) 
Cp,solid (0 to 36 K) b = 0.032; c = − 0.002; d = 1.434e-4 
Cp,solid (0 to 149.9 K) a = − 3.68; b = − 0.045; c = 0.009; d = − 2.954e-5 
Cp,solid (149.9 to 293.3 K) a = − 58.652; b = 1.344; c = − 0.003; d = 1.972e-6 
Cp,solid (293.3 to 1664 K) a = 470.25; b = − 0.099; c = 2.813e-5; e = 4822.6; f = 2.453e5 
2. Wollastonite  
Tg 1065 K [53,55,57,63] 
Tm 1821 K 
ΔSm 31.5 J/mol 
ΔSphase 4.2 J/mol 
Cp,liquid (1817 to 2200 K) 146.44 J/mol.K 
Cp,solid (298.2 to 1398 K) a = 111.462; b = 0.015; f = − 2727968 
Cp,solid (1398 to 1817 K) a = 108.156; b = 0.016; f = − 2363960 
3. Silica  
Tg 1375 K [52,56,64] 
Tm 1999 K 
ΔSm 728 J/mol.K 
ΔSphase1 8920 J/mol.K 
ΔSphase2 81.4 J/mol.K 
Cp,liquid (1480 to 2000 K) 81.373 J/mol.K 
Cp,solid (0 to 100 K) c = 0.003; d = 1.507e-5 
Cp,solid (100 to 298.2 K) a = − 7.556; b = 0.269; c = − 3.919e-4; d = 2.497e-7 
Cp,solid (298.2 to 847 K) a = 58.082; b = − 0.0003; c = 0.00003; f = − 1425907.2 
Cp,solid (847 to 1079 K) a = 58.873; b = 0.01; f = 11715.2 
Cp,solid (1079 to 1996 K) a = 72.735; b = 0.01; c = − 0.00000001; f = − 4128771.2 
4. Germania  
Tg 819 K [56,65] 
Tm 1389 K 
ΔSm 12.1 J/mol 
ΔSphase none 
Cp,liquid (1388 to 2000 K) 68.417+ 0.007T  
Cp,solid (0 to 60.6 K) b = 0.056; c = 0.004; d = − 2.05e-5 
Cp,solid (60.6 to 287 K) a = − 3.257; b = 0.314; c = − 0.0005; d = − 3.856e-7; f = − 5517.792 
Cp,solid (287 to 1308 K) a = 44.813; b = 0.074; c = –6.188e-5; d = 1.979e-8; f = − 848653.267  
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