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a b s t r a c t 

Due to their unique optical and electronic functionalities, chalcogenide glasses are materials of choice for 

numerous microelectronic and photonic devices. However, to extend the range of compositions and ap- 

plications, profound knowledge about composition-property relationships is necessary. To this end, we col- 

lected a large quantity of composition-property data on chalcogenide glasses from the SciGlass database 

regarding glass transition temperature ( T g ), coefficient of thermal expansion (CTE), and refractive index 

( n D ). With these data, we induced predictive models using four machine learning algorithms: Random 

Forest, K-nearest Neighbors, Neural Network (Multilayer Perceptron), and Classification and Regression 

Trees. Finally, the induced models were interpreted by computing the SHapley Additive exPlanations 

(SHAP) values of the chemical features, which revealed the key elements that significantly impacted 

the tested properties and quantified their impact. For instance, Ge and Ga increase T g and decrease CTE 

(two properties that depend on bond strength), whereas Se has the opposite effect. Te, As, Tl, and Sb 

increase n D (which strongly depends on polarizability), whereas S, Ge, and P diminish it. The SHAP in- 

teraction analysis indicated two-element pairs that are likely to exhibit the mixed-former effect: arsenic- 

germanium and sulfur-selenium. Knowledge about the role of each element on the glass properties is 

precious for semi-empirical compositional development trials or simulation-driven formulations. The in- 

duced models can be used to design novel chalcogenide glasses with the required combinations of prop- 

erties. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Chalcogenide glasses contain one or more chalcogens (sulfur, 

elenium, and tellurium) and no oxygen. Their relatively small 

and gaps ( E g = 1–3 eV) lead to optical and electrical properties 

ery different from those of oxide glasses ( E g = 2.5–5 eV). This 

eature allows several high-technology applications, especially in 

ar-infrared transmission, which are not possible with other glass 

ypes. The unique functionalities of chalcogenide glasses make 

hem the selected materials for microelectronic and photonic de- 

ices. They can be made as thin and thick films, molded into 

enses, or drawn into fibers. They have been used in commer- 

ial applications, such as infrared cameras, fibers, laser waveg- 
∗ Corresponding author at: Ilum School of Science, Brazilian Center for Research 

n Energy and Materials (CNPEM), Rua Lauro Vanucci 1020, CEP 13087-548, Camp- 

nas, Brazil. 

E-mail address: daniel.cassar@ilum.cnpem.br (D.R. Cassar) . 
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ides for optical switching, and chemical and temperature sensors 

1] . 

Chalcogenide compounds, such as AgInSbTe and GeSbTe, are 

lso applied in re-writable optical disks and phase-change memory 

evices. They are fragile glass formers according to Angell’s classi- 

cation [2] ; by controlling heating and cooling, they can rapidly 

witch between non-crystalline and crystalline states, thereby sig- 

ificantly changing their optical and electrical properties and al- 

owing information storage [1] . 

Chalcogenide glasses are traditionally composed of at least one 

halcogen (Se, Te, and S) combined with Ge, As, Sb, Si, P, B, Pb, La,

l, or other neighboring atoms on the periodic table. A key char- 

cteristic of chalcogens provides chalcogenide glasses with unique 

roperties: they generate low-energy phonons within the non- 

rystalline network and confer wide optical transparency, extend- 

ng far into the infrared. This property is a defining characteristic 

nd has been the source of much research on infrared optics ap- 

lications. 

https://doi.org/10.1016/j.actamat.2022.118302
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118302&domain=pdf
mailto:daniel.cassar@ilum.cnpem.br
https://doi.org/10.1016/j.actamat.2022.118302
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Chalcogenide glasses are glassy semiconductors. There is rel- 

tively firm knowledge about their short-range structure, which 

overs the coordination number, the bond length, and the bond 

ngle. Also, knowledge of structural dependence on atomic compo- 

ition, which is practically possible in covalent glasses, has added 

aluable insights into the chalcogenide glass science [1] . 

The classical chalcogenide glasses (mainly sulfur-based, such as 

s-S or Ge-S) are reasonable glass-formers; however, their glass- 

orming abilities significantly decrease with increasing the molar 

eight of their constituent elements, i.e., S > Se > Te. Most of the 

ormulations available are far worse glass formers than the typ- 

cal oxide compositions, and this is a critical issue in this glass 

amily [1] . More recently, the glass research community started 

igging deeper into the crystallization behavior [3] and develop- 

ent of chalcogenide glass-ceramics, while keeping their opto- 

lectronic properties and showing improved mechanical behavior 

4] . 

A Scopus search made in May 30, 2022 with the keywords 

halco ∗ and glass ∗ showed that from 4100 (article title) to 

2,100 (title, abstract, or keyword) articles addressing chalco- 

enide glasses have been published since the pioneering article 

y Kolomiets and Pishlo in 1963 [5] ; the current rate is approx- 

mately one article per day. Due to incomplete structural knowl- 

dge, especially about medium-range structures, density fluctua- 

ions, and defects, the chalcogenide glass science is far behind 

hose constructed for single-crystalline semiconductors or oxide 

lasses. Also, despite the substantial research conducted in the 

ast 50 years, the understanding of composition-property rela- 

ionships for chalcogenide glasses is still behind the accumu- 

ated knowledge about oxide glasses, which have been system- 

tically studied by many researchers for approximately two cen- 

uries. Therefore, to extend the range of available compositions and 

pplications of chalcogenide glasses, there is a pressing need for 

ore profound knowledge about the composition-structure-property 

elationships. 

While the number of machine learning (ML) papers addressing 

xide glasses has upsurged in the past five years [6–19] , to the best

f our knowledge, there are only three publications on ML research 

n chalcogenide glasses [20,21,38] . 

The first study [20] reports on a multivariate linear regres- 

ion (MLR) capable of predicting the glass transition tempera- 

ure of the As x Se 1–x binary system. The obtained MLR model 

 T g = 2464 + 597.3 〈 r 〉 − 6755.3 ν − 301.61 K + 4.9257 U 0ex 

 0.50313 KU 0ex ) agreed with experimental values for this particu- 

ar binary system and was based on physical and chemical proper- 

ies, such as the average coordination number 〈 r 〉 , the Poisson ratio 

, the bulk modulus K , and the mean experimental atomic bonding 

nergy U 0ex . 

The second study [21] reports on recognizing mid-gap states 

n chalcogenide glasses. To avoid a formidable computational task, 

u et al. [21] adopted a machine learning procedure to under- 

tand and predict mid-gap states (MGS) in typical Ovonic Thresh- 

ld Switching (OTS) materials; selectors are used to suppress cur- 

ent leakage in high-density memory chips. They built hundreds 

f chalcogenide glass models and collected major structural fea- 

ures from both short-range order (SRO) and medium-range or- 

er (MRO) of the amorphous cells. After training an artificial neu- 

al network using these features, the induced model recognized 

GS in new glasses with 95% accuracy. By analyzing the synaptic 

eights of the input structural features, they discovered that the 

onding and coordination environments from SRO, and particularly 

RO, are closely related to MGS. The resulting model could be 

sed in several other OTS chalcogenides after minor modification. 

he authors concluded that the machine learning technique al- 

owed them to understand the OTS mechanism from a vast amount 

f structural data without heavy computational tasks, providing a 
2 
ew strategy to design functional amorphous materials from first 

rinciples. 

Finally, the third study [38] reports on a Hopfield neural net- 

ork capable of predicting the partial radial distribution function 

f a two-component glassy chalcogenide, namely GeSe 3 . 

The incentive of researching ML algorithms applied to chalco- 

enides was pointed out as an opportunity in the field by Tandia 

t al. [7] . Meeting this incentive is the main objective of this work. 

ere we use a different approach from that of Refs. [20,21,38] . We 

im to induce ML models referring to composition-property relation- 

hips and interpret them to find the effect of each element on the 

lass properties. Also, we will deal with much more complex com- 

ositions, containing up to six elements rather than a single binary 

ystem. To this end, we collected published data regarding proper- 

ies of chalcogenide glasses: glass transition temperature ( T g ), co- 

fficient of thermal expansion (CTE), and refractive index ( n D ), and 

sed ML-based approaches to generate predictive models for these 

roperties. 

The following ML algorithms were investigated in this study: 

lassification and Regression Trees (CART) [34] , k -Nearest Neigh- 

ors ( k -NN) [35] , Multilayer Perceptron (MLP, a type of Neural Net- 

ork) [36] , and Random Forest (RF) [37] , which were chosen be- 

ause our previous work on oxide glasses indicated that these are 

he top performers among six ML algorithms [8] . 

Our first objective is to obtain the best performer model pro- 

uced using the investigated ML algorithms. Then, we generated 

he explanation and so the interpretation of the best obtained 

odel by computing the SHapley Additive exPlanations (SHAP) val- 

es of the features [22–24] . The produced explanations allow us 

o obtain the chemical elements’ role in each investigated prop- 

rty. We also computed the SHAP interaction values, which al- 

ow the investigation of possible non-trivial correlations between 

he chemical elements that affect the glass properties. We ex- 

ect that the results of this work will help to understand the 

ole played by the chemical elements in the chalcogenide glasses 

nd aid the design of new glasses with desired combinations of 

roperties. 

. Methodology 

.1. Data collection 

The data on chalcogenide glasses used in this work were 

ollected from the SciGlass database ( https://github.com/epam/ 

ciGlass ). In this work, we considered glasses part of the chalco- 

enide family if they have in their composition a non-zero amount 

f sulfur, selenium, or tellurium; and have no oxygen, fluorine, 

hlorine, bromine, or iodine. After this filtering procedure, we 

nly collected entries with one or more investigated properties, 

.e., glass transition temperature, coefficient of thermal expansion, 

r refractive index. Additionally, we also investigated the Young’s 

odulus of chalcogenide glasses; however, the performance of 

he predictive models was subpar; these results are reported in 

he supplementary material for completeness. We also considered 

tudying the Abbe number of chalcogenide glasses; however, only 

pproximately fifty examples were available, which would not be 

nough to use ML algorithms properly. 

After the data collection step, we performed a data cleaning 

tep to remove extremely low or high property values that likely 

efer to typos or gross measurement errors. The strategy used was 

imilar to that employed in our previous publication [16] : we re- 

oved the extreme values for each property and the duplicate 

ntries by taking the median value of the property. We defined 

ll values below the 0.05% percentile or above the 99.95% per- 

entile as extreme. Descriptive statistics on the collected dataset 

re shown in Table 1 . 

https://github.com/epam/SciGlass


S.M. Mastelini, D.R. Cassar, E. Alcobaça et al. Acta Materialia 240 (2022) 118302 

Table 1 

Descriptive statistics of the used datasets for each property. 

T g (K) log 10 (CTE) n D 

Count 7620 942 456 

Mean 476.4 −4.69 2.61 

Std Dev 107.9 0.20 0.41 

Min 266.2 −5.17 1.97 

50% 453.2 −4.73 2.50 

Max 877.2 −4.02 4.34 

Skewness 0.78 0.62 1.04 

Kurtosis 0.35 0.01 0.91 

Table 2 

Values of the performance metrics for the three properties ob- 

tained using the tuned RF algorithm. The up arrow indicates 

that the higher the metric, the better; the down arrow indi- 

cates the opposite. 

Metric T g (K) log 10 (CTE) n D 

RD ( ↓ ) 3.4 ± 0.1 1.2 ± 0.2 3.4 ± 0.7 

R2 ( ↑ ) 0.93 ± 0.01 0.76 ± 0.09 0.87 ± 0.06 

RMSE ( ↓ ) 28 ± 2 0.10 ± 0.02 0.15 ± 0.05 

RRMSE ( ↓ ) 0.26 ± 0.02 0.49 ± 0.08 0.37 ± 0.09 

2

o

f

R

a

P

e

i  

i

i

u

t

(

l

o

d

d

e

5

d

f

i

2

a

n

a

(

t

m

p

[

g

g

p

v

o

I

v

a

v

c

i

b

T

3

3

t

w

t

s

n

w

c

l

t

e

m

T

w

w

c

c

t

u

i

t

(

3

p

C

g

N

c

t

t

t

g

T

t

a  

n

t

p

0

T

A

t

i

.2. Machine learning experiments 

We followed the same ML-base strategy of our recent work on 

xide glasses [8] . We considered three ML algorithms that per- 

ormed well in a previous analysis, namely, CART, k -NN, MLP, and 

F. Detailed explanations of how they induce predictive models are 

vailable in the supplementary material of Ref. [8] . 

The predictive models were induced using the scikit-learn 

ython package [25] ; a hyperparameter tuning routine was also 

mployed. We adopted a nested cross-validation routine consider- 

ng an outer-fold of 10 for testing and an inner-fold of 5 for val-

dation. The tuning strategy was the use of random search, test- 

ng 500 sets of hyperparameters for each outer fold. Moreover, we 

sed the same search space adopted in Ref. [16] . For experimen- 

al reproducibility, we make available the code used on GitHub 

 https://github.com/ealcobaca/mlglass ). 

We used nested cross-validation to avoid overfitting and to se- 

ect the models [26] . This approach can be considered overzeal- 

us for most practical applications [27] . Thus, we split the original 

ataset into training and test sets using 10-outer-fold, creating ten 

isjoint sets [26,27] . For the internal validation of the hyperparam- 

ter optimization procedure, we used, for each nine training folds, 

-inner-fold, creating five disjoint validation sets for the training 

ata [26,27] . Table 2 (Results section) shows the average results 

rom the 10-outer-fold test sets, which were not used in the train- 

ng and validation subsets. 

.3. Interpreting the induced models through SHAP analysis 

Models induced by ML algorithms can hold a significant 

mount of information, depending on the used algorithm, that may 

ot be easily interpreted by humans. A new and powerful data 

nalysis tool called SHAP [22–24] , distributed as a Python module 

 https://github.com/slundberg/shap ), is a model-agnostic approach 

o interpreting any predictive function and extracting/visualizing 

eaningful information in a human-readable fashion. The ap- 

roach used by SHAP is the computation of the Shapley values 

28] , which are based on game theory and inform how much a 

iven prediction is affected by the input features concerning a 

iven base value. Detailed information on this procedure is re- 

orted by the creators of this method [22] . 
3 
One viable way to visualize the results of the SHAP analysis is 

ia beeswarm plots. These plots can be thought of as horizontal vi- 

lin plots, with features sorted by decreasing order of importance. 

n this case, the feature importance is measured by the absolute 

alue of the SHAP values, which indicates the features that have 

 higher impact on the predicted value of the model. The SHAP 

alues have the same units of the property being predicted and 

onvey how much a given feature (amount of chemical elements 

n the glass, in this case) impacts the property in relation to a 

ase value, which is taken as the mean value of the property (see 

able 1 ). 

. Results and discussion 

.1. Analysis of the datasets used in this study 

Table 1 shows the descriptive statistics of the glass composi- 

ions collected from the SciGlass database. The smallest dataset 

as labeled with the refractive index with 456 unique composi- 

ions, whereas the largest dataset was labeled with the glass tran- 

ition temperature with 7620 unique compositions. While these 

umbers are much smaller than those used in the previous ML 

orks on oxide glasses [9–13,16,17] , they are still significant and 

an be used by ML algorithms to extract composition-property re- 

ations. It is relevant to note that current chalcogenide formula- 

ions comprise 58 elements, with only 1 to 6 different elements in 

ach glass. 

Fig. 1 shows the histogram of the number of chemical ele- 

ents in the glasses for each property, which varies from 1 to 6. 

hese relatively “simple” compositions contrast with those of the 

idely studied oxide glasses, for which multi-component glasses 

ith more than 20 elements are reported. Hopefully, this work 

ould guide researchers in formulating novel multi-component 

halcogenide glasses, as discussed further in this communica- 

ion. Similarly, Fig. 2 shows the histogram for the property val- 

es, for which the minimum and maximum values can be found 

n Table 1 . All studied properties have an asymmetric distribu- 

ion, which is evidenced by the non-zero value for their skewness 

 Table 1 ). 

.2. Predictive performance measures 

Table 2 shows the predictive performance metrics for the three 

roperties obtained by the RF algorithm. Additional tables, with 

ART, MLP, and k -NN results, can be found in the Appendix. In 

eneral, the predictive performance values obtained by RF and k - 

N outperformed those obtained by CART and MLP. However, if we 

ompared the produced models for the chalcogenide glasses with 

hose obtained for oxide glasses [16] , we observed a decrease in 

he predictive performance. This decrease in performance is related 

o the lower number of training instances available for the chalco- 

enides compared with the instances available for oxide glasses. 

he number of examples (composition-property points) used in 

he training procedures was much larger for the oxide glasses, 

bout 20,0 0 0 to 50,0 0 0, while for the chalcogenides, the available

umber was in the range of 450–7500. As expected, the uncer- 

ainty decreased with the number of examples used in the training 

rocedure; for instance, R 

2 is 0.87 for n D (456 examples) versus 

.93 for T g (7620 examples). 

Fig. 3 shows the main results of the relative deviation of the 

 g prediction for the four ML algorithms used in the experiments. 

gain, as reported in previous communications [6,8,17] , the uncer- 

ainty in the extremes of low and high T g is higher than in the 

ntermediate range. This behavior is similar to those from other 

https://github.com/ealcobaca/mlglass
https://github.com/slundberg/shap
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Fig. 1. Frequency versus the number of chemical elements in each composition for three properties of chalcogenide glasses. 
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tudied properties and reflects the small number of examples in 

he extreme regions. The plots for the other properties are reported 

n the Appendix. 

Fig. 4 shows the mean and standard deviation of the residual 

rediction (reported minus predicted values) of the T g , log 10 (CTE), 

nd n D models induced by RF for each chemical element in the 

lass, that is, for glasses having these elements in their compo- 

ition. The upper region of these plots shows how many exam- 

les were available with each of the chemical elements consid- 

red. Again, this result is similar to those previously reported for 

xide glasses [16] . Elements that are included in a large num- 

er of glass compositions tend to have a mean residual predic- 

ion close to zero, whereas most of the others show much larger 

rrors. 

The induced predictive models can be used for the computer- 

ided design of new chalcogenide glasses for the desired combi- 

ations of properties. However, due to the limited dataset used 

or training these models, unsatisfactory predictions will likely re- 

ult from searching for chemical compositions that contain cer- 

ain elements that are present in a small number of composi- 

ions, such as Co, U, Mg, Sm, Tm, Y, Ce, Cs, H and a few others

hown in Fig. 4 . The same restriction applies to new formulations 

hat are far away from those present in the training dataset. To 
4

itigate this problem, we would have to significantly extend the 

ataset. 

In the following section, we further explored the RF-induced 

odels in an attempt to extract useful information regarding the 

ffect of each chemical element on the investigated properties. To 

his end, we will use the SHAP analysis discussed in the method- 

logy section. 

.3. Interpreting the induced models 

By computing the SHAP values, we obtained the plots shown in 

ig. 5 for the three studied properties. Although the SHAP method 

till presents some problems [29,30] , these beeswarm plots pro- 

ide valuable insights for designing new chalcogenide glasses. Each 

ot in these plots represents a glass having the chemical element 

hown in the respective left label (note that the dots can stack ver- 

ically, conveying the message that many glasses have the same 

HAP value). The x -axis shows the SHAP value, which has the same 

nits as the target property and quantifies the impact of the fea- 

ure (chemical element) on the property. Finally, each dot has a 

olor representing the atomic fraction of the element in the glass 

increasing from purple to yellow). 
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Fig. 2. Frequency versus value for three properties of chalcogenide glasses. 

n

c

c

s

p

n

w

t

l

i

t

p

a

t

m

o

v

e

w

c  

t

p

s

g

s

(

t

l

i

v

g

p

s

c

s

c

a

l

t

s

o

c

3

Fig. 5 a shows that large amounts of silicon, gallium, germa- 

ium, lanthanum, and barium contribute to increasing the T g of 

halcogenide glasses, whereas thallium, selenium, and tellurium 

ontribute to decreasing it. Sulfur, bismuth, indium, copper, and ar- 

enic have a mixed effect; they can either increase or decrease this 

roperty, suggesting that these elements interact within the glass 

etwork in a complex way. 

Fig. 5 b shows that sulfur, selenium, and thallium increase CTE, 

hile sodium, germanium, silicon, gallium, and antimony con- 

ribute to decreasing it. A mixed effect is observed for arsenic, tel- 

urium, and phosphorus for this property. 

The properties discussed ( T g and CTE) are related to the chem- 

cal bond energy. The analysis of the refractive index (a property 

hat is not directly related to the chemical bond energies, but the 

olarizability of the elements) is shown in Fig. 5 c. Here, tellurion, 

rsenic, thallium, antimony, lead, silicon, and indium are elements 

hat may increase this property, while sulfur, phosphorus, and ger- 

anium may decrease it. No clear mixed effect was observed by 

nly looking at Fig. 5 c. 

Now, we will look in more detail at the magnitude of the SHAP 

alues, which, as already mentioned, quantifies the impact of the 

lements on the final prediction of the model. Starting with Fig. 5 a, 

e see that silicon (6%), gadolinium (42%), and germanium (88%) 

an rise T g the most, up to about 170 K. The numbers in paren-

heses refer to the percentage of high T g glasses (above the 80% 

ercentile) in the dataset containing these chemicals. As it can be 

een, by simply looking at the number of reported chalcogenide 
t

5

lasses having high T g , one could miss the significant impact of 

ilicon on this property. 

Similarly, thallium (22.3%), selenium (80.7%), and tellurium 

42.6%) can decrease T g the most, down by about 100 K in the ex- 

reme case. The numbers in parentheses refer to the percentage of 

ow T g glasses (below the 20% percentile) in the dataset contain- 

ng these chemicals. As previously mentioned, these analyses pro- 

ide us with rich information to empirically design new chalco- 

enide glasses. The following paragraphs explore the other two 

roperties. 

Fig. 5 b shows that sulfur, zinc, sodium, germanium, silicon, and 

elenium are the elements with the most significant impact on in- 

reasing CTE, which can amount to 0.25 in the base-10 logarithm 

cale for the most extreme case. Interestingly, germanium only in- 

reases CTE when present in small quantities, but even so, it has 

 significant impact on this property. Germanium, silicon, and gal- 

ium play the most significant role in decreasing CTE, reaching up 

o 0.2 in the base-10 logarithm scale. 

Finally, Fig. 5 c shows that tellurium, arsenic, and thallium can 

ignificantly increase n D , the first reaching an impressive impact 

f 0.4 on this property. Meanwhile, sulfur and phosphorus can de- 

rease this property by more than 0.2. 

.4. SHAP interaction analysis 

Another way to interpret the induced models is by computing 

he SHAP interaction values. According to Lundberg et al., “SHAP 
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Fig. 3. Boxplot of residuals for the prediction of T g for the tuned models. The boxes are bounded by the first and third quartiles, while the error bars comprehend 66% of 

the data. The mean is shown by a horizontal orange line and the notch represents its confidence interval. 
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nteraction values can be interpreted as the difference between 

he SHAP values for feature i when feature j is present and the 

HAP values for feature i when feature j is absent” [24] . Thus, 

f the chemical elements A and B have a null SHAP interaction 

alue for a given property, then the contribution of element A 

o the property is independent of the presence of element B and 

ice-versa. 

What is particularly interesting for glass science and glass com- 

osition design is when the SHAP interaction value is significantly 

igher than zero. A famous case of interaction between chemi- 

al elements in oxide glasses (as recently pointed out by Ravinder 

t al. [12] ) is the well-known boron anomaly [31–33] . This anomaly 

s explained by the change in the number of the boron network 

ridging oxygens with the increase of network modifier elements, 

uch as the alkali and alkali-earth. Thus, any property that depends 

n the connectivity of the glass network will be affected by an in- 

eraction of boron with the modifiers, thus yielding a higher SHAP 

nteraction value. 

Fig. 6 shows the SHAP interaction values for the three studied 

roperties for the most relevant pairs of chemical elements. Fig. 6 a 

hows that the higher SHAP interaction values for T g occur for 
6 
airs containing germanium, sulfur, arsenic, selenium, tellurium, 

nd gallium. The pairs arsenic-germanium and sulfur-selenium are 

articularly interesting, as they have the highest SHAP interaction 

alues. All these elements can form glass networks; hence this fig- 

re indicates the mixed-former effect on the glass transition tem- 

erature of chalcogenide glasses. 

Similarly, Fig. 6 b and c show that the higher SHAP interaction 

alues for log 10 (CTE) and n D occur for pairs containing a subset 

f the elements mentioned above for T g . For log 10 (CTE) the el- 

ments with higher SHAP interaction values are germanium, ar- 

enic, sulfur, and selenium, and for n D , the key elements are sul- 

ur, selenium, arsenic, tellurium, and germanium. Interestingly, the 

rsenic-germanium pair shows the highest SHAP interaction values 

or log 10 (CTE), whereas the sulfur-selenium pair shows the highest 

alue for n D . These two pairs also show the highest SHAP interac- 

ion values in the T g analysis. 

The above discussions show that the SHAP analysis not 

nly reveals the individual effect of the chemical elements on 

he glass properties and their respective magnitudes but also 

ives clues on non-trivial, useful interactions between element 

airs. 
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Fig. 4. Mean and standard deviation of the RF prediction residual of ( a ) T g , ( b ) log 10 (CTE), and ( c ) n D for glasses having the chemical element shown on the x-axis . The 

figures on the top are the number of examples (glass compositions) having the corresponding element in the dataset. 

7 
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Fig. 5. Beeswarm plot of the SHAP values obtained from the RF predictive model of ( a ) T g , ( b ) log 10 (CTE), and ( c ) n D . The numbers within brackets beside the chemical 

element labels represent, respectively, the percentage of examples that contain the said element in the low range of the property (lower than the 20% percentile), the 

percentage of examples that contain the said element in the high range of the property (higher than the 80% percentile), and the maximum atomic fraction of the element 

in one of the glasses in the dataset. Each dot represents a glass and its color represents the atomic fraction of the element in the glass (increasing from purple to yellow). 

8 
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Fig. 6. 2D histogram of the SHAP interaction values for ( a ) T g , ( b ) log 10 (CTE), and ( c ) n D . The diagonal (where the interaction strength is zero) was removed. 
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. Summary and conclusions 

In this study, we collected over nine thousand composition- 

roperty sets for three properties of chalcogenide glasses. Current 

halcogenide formulations comprise 58 chemical elements, with 1 

o 6 elements in each glass. We used these data to train and test 

our different ML algorithms to compute composition-property re- 

ationships for this important glass family, for the first time. The 

F and k -NN algorithms outperformed the MLP and CART algo- 

ithms in predictive performance, confirming previous results for 

xide glasses. 

A SHAP analysis of the RF models indicated the key elements 

hat significantly increase or decrease the value of the tested prop- 

rties and their maximum possible variation. For instance: ger- 

anium, silicon, and gallium increase T g and decrease CTE. This 

ccurs likely because these elements rise the interatomic bond 
9 
trength of these covalent glasses. Selenium has the opposite effect 

n these properties. Tellurium, arsenic, thallium, and antimony in- 

rease n D , which depends mostly on polarizability, whereas sulfur 

nd phosphorus diminish it. 

A SHAP interaction analysis revealed some element pairs that 

otentially exhibit the mixed-former effect: arsenic-germanium 

nd sulfur-selenium. 

This knowledge about the effect of each element on properties 

an be precious for semi-empirical compositional development tri- 

ls of chalcogenide glasses. Besides, the induced predictive models 

an be used for the computer-aided design of new chalcogenide 

lasses having desired combinations of properties. However, due 

o the limited dataset used for training these models, unsatisfac- 

ory predictions will likely result in searching for chemical com- 

ositions that are too far away from those present in the train- 

ng dataset. The same restriction applies to other substances, such 
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Table A.2 

Values of the performance metrics for the four properties obtained using the tuned 

CART algorithm. The up arrow indicates that the higher the metric, the better; the 

down arrow indicates the opposite. 

Metric T g (K) log 10 (CTE) n D 

RD ( ↓ ) 4.4 ± 0.2 1.7 ± 0.2 5 ± 1 

R2 ( ↑ ) 0.88 ± 0.02 0.6 ± 0.1 0.8 ± 0.1 

RMSE ( ↓ ) 38 ± 3 0.12 ± 0.02 0.20 ± 0.06 

RRMSE ( ↓ ) 0.35 ± 0.02 0.6 ± 0.1 0.5 ± 0.1 

Table A.3 

Values of the performance metrics for the four properties obtained using the tuned 

k -NN algorithm. The up arrow indicates that the higher the metric, the better; the 

down arrow indicates the opposite. 

Metric T g (K) log 10 (CTE) n D 

RD ( ↓ ) 3.7 ± 0.1 1.3 ± 0.2 3.3 ± 0.6 

R2 ( ↑ ) 0.92 ± 0.01 0.76 ± 0.08 0.87 ± 0.05 

RMSE ( ↓ ) 30 ± 2 0.10 ± 0.02 0.15 ± 0.05 

RRMSE ( ↓ ) 0.28 ± 0.02 0.49 ± 0.09 0.36 ± 0.09 

Table A.4 

Values of the performance metrics for the four properties obtained using the tuned 

MLP algorithm. The up arrow indicates that the higher the metric, the better; the 

down arrow indicates the opposite. 

Metric T g (K) log 10 (CTE) n D 

RD ( ↓ ) 4.1 ± 0.5 1.3 ± 0.1 3.5 ± 0.6 

R2 ( ↑ ) 0.92 ± 0.02 0.76 ± 0.08 0.87 ± 0.08 

RMSE ( ↓ ) 31 ± 4 0.10 ± 0.02 0.15 ± 0.06 

RRMSE ( ↓ ) 0.29 ± 0.03 0.5 ± 0.09 0.4 ± 0.1 

N

i

n

v

s oxide, metallic, and organic glasses. One solution to mitigate 

his problem is to significantly extend the available composition- 

roperty dataset. 
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ppendix 

Table A.1 shows the hyperparameter tuning space and the best 

alues obtained after tuning. 
Table A.1 

Hyperparameter search space and best values. For more informa

learn user guide at https://scikit-learn.org/stable/user_guide.htm

Algorithm Hyperparameter Range 

CART criterion {mse, friedman_ms

min_impurity_decrease [0, 0.1] 

k-NN n_neighbors [1, 1000] 

weights {uniform, distance}

MLP hidden_layer_sizes [0, 100] 

solver {lbfgs, sgd, adam} 

activation {logistic, tanh, relu

alpha {10 −5 , 10 −4 , 10 −3 } 

learning_rate {constant, adaptive

learning_rate_init [0.001, 0.1] 

batch_size {200, 500, 1000} 

max_iter [200, 1000] 

momentum [0, 1] 

RF n_estimators [500, 1000] 

max_features {auto, sqrt, log2} 

10 
Tables A .2 –A .4 show the performance measures for the CART, k - 

N, and MLP algorithms. Tables A .4 –A .7 show the metrics for the 

nduced models for the four properties studied in this work. Fi- 

ally, Figs. A.1 and A.2 show the boxplots and the residual plots 

s. chemical elements for log 10 (CTE) and n D . 
tion about the hyperparameters, please check the scikit- 

l. 

T g log 10 (CTE) n D 

e} mse friedman_mse friedman_mse 

0.0952 0.0238 0.0737 

6 4 4 

 distance distance distance 

(71, 48, 88) (36, 64, 94) (94, 3, 52) 

lbfgs lbfgs lbfgs 

} logistic relu relu 

10 −3 10 −4 10 −3 

} constant constant constant 

0.489 0.0117 0.0906 

1000 500 1000 

701 748 338 

0.0667 0.2089 0.7697 

417 274 120 

sqrt log2 log2 

https://doi.org/10.1016/j.actamat.2022.118302
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Table A.5 

Experimental results for T g. 

Metric 

Cart k -NN MLP RF 

Default Tuning Default Tuning Default Tuning Default Tuning 

RD 4.4 ± 0.2 4.4 ± 0.2 3.9 ± 0.1 3.7 ± 0.1 7.2 ± 0.4 4.1 ± 0.5 3.5 ± 0.1 3.4 ± 0.1 

R 2 0.88 ± 0.01 0.88 ± 0.02 0.92 ± 0.01 0.92 ± 0.01 0.80 ± 0.01 0.92 ± 0.02 0.92 ± 0.01 0.93 ± 0.01 

RMSE 38 ± 2 38 ± 3 31 ± 2 30 ± 2 49 ± 3 31 ± 4 30 ± 2 28 ± 2 

RRMSE 0.35 ± 0.02 0.35 ± 0.02 0.29 ± 0.02 0.28 ± 0.02 0.45 ± 0.01 0.29 ± 0.03 0.27 ± 0.02 0.26 ± 0.02 

Table A.6 

Experimental results for log 10 (CTE). 

Metric 

Cart k -NN MLP RF 

Default Tuning Default Tuning Default Tuning Default Tuning 

RD 1.6 ± 0.3 1.7 ± 0.2 1.3 ± 0.2 1.3 ± 0.2 2.4 ± 0.3 1.3 ± 0.1 1.2 ± 0.2 1.2 ± 0.2 

R 2 0.6 ± 0.1 0.6 ± 0.1 0.76 ± 0.08 0.76 ± 0.08 0.46 ± 0.08 0.76 ± 0.08 0.75 ± 0.09 0.76 ± 0.09 

RMSE 0.12 ± 0.03 0.12 ± 0.02 0.10 ± 0.02 0.10 ± 0.02 0.15 ± 0.02 0.10 ± 0.02 0.10 ± 0.02 0.10 ± 0.02 

RRMSE 0.6 ± 0.1 0.6 ± 0.1 0.49 ± 0.08 0.49 ± 0.09 0.78 ± 0.06 0.50 ± 0.09 0.50 ± 0.09 0.49 ± 0.08 

Table A.7 

Experimental results for n D . 

Metric 

Cart k -NN MLP RF 

Default Tuning Default Tuning Default Tuning Default Tuning 

RD 5 ± 1 5 ± 1 3.6 ± 0.8 3.3 ± 0.6 4.9 ± 0.8 3.5 ± 0.6 3.4 ± 0.6 3.4 ± 0.7 

R 2 0.7 ± 0.1 0.8 ± 0.1 0.86 ± 0.07 0.87 ± 0.05 0.79 ± 0.08 0.87 ± 0.08 0.86 ± 0.05 0.87 ± 0.06 

RMSE 0.22 ± 0.07 0.20 ± 0.06 0.15 ± 0.06 0.15 ± 0.05 0.19 ± 0.06 0.15 ± 0.06 0.16 ± 0.05 0.15 ± 0.05 

RRMSE 0.6 ± 0.2 0.5 ± 0.2 0.4 ± 0.1 0.36 ± 0.09 0.47 ± 0.09 0.4 ± 0.1 0.39 ± 0.09 0.37 ± 0.09 

Fig. A.1. Boxplot of residuals for the prediction of log 10 (CTE) for the tuned models. The boxes are bounded by the first and third quartiles, while the error bars comprehend 

66% of the data. The mean is shown by a horizontal orange line and the notch represents its confidence interval. 
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Fig. A.2. Boxplot of residuals for the prediction of n D for the tuned models. The boxes are bounded by the first and third quartiles, while the error bars comprehend 66% of 

the data. The mean is shown by a horizontal orange line and the notch represents its confidence interval. 
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