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1. INTRODUCTION

Vitrification from the molten state hinges on averting crystallization during the cooling 
path. On the other hand, critical natural processes, such as the formation of snow and igneous 
rocks, like obsidian, and technological operations, for example, solidification of metallic alloys 
and glass ceramization, illustrate the utmost importance of crystallization in our environment 
and technology. The structural rearrangements fostered by crystal nucleation and growth cause 
drastic changes in the macroscopic properties of glass-forming melts and magmas. In this 
article, we summarize and discuss the applicability of the most accepted models to describe 
crystal nucleation, growth, and overall crystallization in glass-forming systems. We also focus 
on the significant progress achieved in the understanding of crystallization over the past few 
decades through the combined use of theoretical models and experiments. Additionally, we 
highlight selected open problems and directions for future studies. 

When a melt is cooled below its liquidus temperature, it becomes a supercooled liquid 
(SCL) from which one or more crystalline phases will tend to form. This process takes place 
in two steps; the formation of crystal clusters (nucleation) and their subsequent evolution 
to macroscopic crystals (growth). The combination of crystal nucleation and growth leads 
to the phenomenon called crystallization. Crystallization counteracts vitrification, i.e., the 
(temporary) freezing of a melt into a glass. Hence, prevention of crystallization upon cooling 
of any liquid, or upon heating gels, gives rise to a glass. On the other hand, uncontrolled 
crystallization, devitrification, may occur upon heating a glass (Zanotto and Mauro 2017; 
Zheng et al. 2019). Eight decades ago, G. W. Morey (1938) stated that “Devitrification is 
the chief factor which limits the composition range of practical glasses, it is an ever-present 
danger in all glass manufacturing and working, and takes place promptly with any error in 
composition or technique.” Figure 1 shows a naturally occurring and partially crystallized 
volcanic glass, called obsidian.

Technological breakthroughs, marked by high-tech industrial processes and devices, 
require a plethora of novel materials, which include glasses and glass-ceramics with unusual 
microstructures and enhanced properties, such as high transparency, bioactivity, ionic 
conductivity, and machinability, sometimes combined with adequate dielectric, magnetic, 
chemical, mechanical, or thermal shock resistance (Zanotto 2010; Montazerian et al. 2015). 
To meet this demand, significant efforts have focused on the synthesis of new glasses and 
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glass-ceramics. In both cases, crystallization control plays such a decisive role that reliable 
models of crystallization processes are needed. Hence, knowledge about the possible 
pathways of crystallization allows one to formulate kinetic criteria to answer some questions 
such as: “Under what conditions can a liquid be supercooled and transform into a glass?” 
Or equivalently, “under what conditions is crystallization expected to occur on the cooling 
path?” In attempts to produce new glasses, crystal nucleation and growth must be avoided. 
Conversely, controlled crystallization can be used to synthesize fully crystallized or semi-
crystalline glass-ceramics (Montazerian et al. 2015). Several monographs provide detailed 
information on these materials (Höland and Beall 2012; Gutzow and Schmelzer 2013; Zanotto 
2013; Neuville et al. 2017). 

However, these technological aspects represent only one side of the pervasive scientific 
interest in the kinetics of nucleation and crystallization in glasses. In addition to their 
practical relevance, the highly viscous glass-forming supercooled liquids serve as remarkable 
experimental models of metastable systems, in which crystallization processes can be initiated, 
accelerated or delayed. These processes can thus be studied conveniently under widely different 
conditions on a laboratory timescale. Such analyses also include the crystallization kinetics 
versus the thermal history of the sample. For this reason, glass-forming liquids have served as 
guinea pigs for testing crystal nucleation and growth theories, providing a deeper insight into 
different phase transformation processes. And lastly, controlled crystallization often produces 
uniquely beautiful (and frequently hidden) nano- and microstructures, as demonstrated by 
Zanotto (2013), which serves as an additional motivation to pursue research in this endless, 
albeit highly gratifying quest to unveil the deeply hidden intricacies of glass crystallization and 
the resulting properties of glass-ceramics.

Preventing or inducing controlled crystal nucleation and growth in a glass (or more 
correctly in a supercooled liquid, SCL) requires a theoretical understanding of these complex 
phenomena. Therefore, this article outlines the basic fundamental aspects of the crystallization 
theory of supercooled oxide glass-forming liquids. Section 2 begins with a description of 
crystal nucleation kinetics in glass-forming liquids. In Section 3, we provide an overview of 
the basic modes of crystal growth. Section 4 describes the overall crystallization kinetics, i.e., 
the evolution of the volume fraction of crystalline phases as a function of time. In this regard, 
we also dwell on glass-forming ability on the cooling path, and glass stability on heating. 
In addition to some well-established results, we also discuss open problems and possible 
approaches to their resolution. In Section 5, a summary of selected results and perspectives for 
future developments completes this article.

Figure 1. Partially devitrified obsidian volcanic glass showing (snowflake) cristobalite crystals of ~1cm.
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∆G Gibbs free energy difference Tm Melting temperature

R Ideal gas constant Δhm Heat of melting of one crystal phase 
particle

A Nucleus surface area qm Heat of melting

N Number of particles in the nucleus NA Avogadro’s number

Δμ Chemical potential difference ϛ Correction factor that varies 
in the range 0.4 to 0.6

μl Chemical potential of liquid f Fraction of preferred growth sites

μcr Chemical potential of crystal ∆sm Entropy of melting

σ Electrical conductivity or 
surface free energy

C2 , C3 Parameters determing the 
time required for the formation 
of the two-dimensional nucleus

Cα Particle number density in the 
crystal cluster

B Combination of parameters 
proportional to the effective diffusion 
coefficient

P Pressure <R> Average size of the nuclei

T Temperature N Number of supercritical nuclei

G Gibbs free energy dt′ time-interval 

Rc Critical radius V Volume

ΔGc Change in the Gibbs free energy Vn Volume crystallized 

ni Number of particles in the cluster wn Shape factor

W Work αn(t)=(Vn(t)/V) Time-dependent crystallized fraction

Wc Work of critical cluster formation N0 Number of supercritical clusters

τ Relaxation time n Number of independent spatial directions

J Rate of formation of 
supercritical clusters

a Activity

Js Steady-state nucleation rate Tb Stokes-Einstein breakdown temperature 

t Time Tg Glass transition temperature

C1 Parameter TK Kauzmann temperature

nc Number of particles in a cluster 
of critical size

Φ Catalytic activity factor 
of a heterogeneous nucleation core

τR Maxwellian relaxation time CRR Cooperatively rearranging regions 

η Newtonian viscosity TKS kinetic spinodal temperature

GS Shear modulus Tgr Reduced glass transition temperatures

tind Induction time GFA Glass-forming ability

dN Change of number of clusters 
of critical size

GS Glass stability

dt Time interval Du Diffusion coefficients from 
crystal growth rates 

kB Boltzmann’s constant Dη Diffusion coefficients from viscosity

D Diffusion coefficient Td Decoupling temperature

d0 Diameter CCR Critical cooling rate

TABLE OF SYMBOLS

Downloaded from http://pubs.geoscienceworld.org/msa/rimg/article-pdf/87/1/405/5594920/rmg.2022.87.09.pdf
by Universidade Federal de São Carlos user
on 13 February 2023



408 Montazerian & Zanotto

2. CRYSTAL NUCLEATION AND CLASSICAL NUCLEATION THEORY

Microscopy techniques are commonly used to determine crystal nucleation rates in 
supercooled liquids. The simplest and most used method is to perform heat treatments for 
different periods at a given temperature, then develop the (nanosized) crystal clusters at a 
higher temperature, and finally quench the specimens to room temperature. This is the so-called 
development or Tammann method. The treated samples are then polished for microscopic 
analysis, where the crystal numbers and sizes are measured. The so-called Tammann method 
(1898) is commonly used to determine the number density of supercritical nuclei. The number 
of crystals per unit volume is called crystal number density, N, which is measured at different 
nucleation times to envisage the variation of N versus time, t. The nucleation rate is the 
slope of the N vs. t plots. A broad range of nucleation can be determined by this method. 
For example, the maximum crystal nucleation rates for oxide glasses vary between 101 m−3·s−1 
to 1017 m−3·s−1 (Fokin et al. 2006). 

The physical nature of nucleation phenomena, in general, and crystal nucleation in 
supercooled liquids, in particular, was first described by J. W. Gibbs (1926). His basic idea can 
be illustrated by the free energy change, ∆G, during crystal cluster formation:

∆G = nΔμ + σA, Δμ=μcr− μl, A=4πR2, n C R
4

3
3


(1)

In formulating Equation (1), it is assumed that spherical crystalline nuclei form in an 
initially homogeneous liquid. These nuclei are described by their radius, R, surface area, A, 
and the number, n, of particles (atoms, molecules or the basic structural units of the crystalline 
phase) they contain. In Equation (1), Δμ (< 0) is the difference of the chemical potentials per 
particle in the liquid (μl) and the crystal (μcr), σ is the interfacial energy, and Cα is the particle 
number density in the crystal cluster. It is also assumed that the elastic strain energy—due to 
the density difference between the supercooled liquid and the crystalline solid—immediately 
decays due to liquid flow and does not interfere with the nucleation process. Within these 
assumptions, this equation is valid only for the simplest case of crystallization when the liquid 
and crystal have the same chemical composition. This kind of crystallization is denoted as 
polymorphic or stoichiometric. Furthermore, it is assumed that the properties of the crystal 
clusters are size-independent. Qualitatively, the situation does not change for incongruent 
crystallization when the crystal and liquid phases have different compositions.

According to thermodynamic evolution criteria, at constant pressure, P, and temperature, T, 
spontaneous macroscopic processes are tied to a decrease in the Gibbs free energy, G, of the 
system. For this reason, the function ∆G = ∆G(R) takes on the shape shown in Figure 2a because 
the thermodynamic driving force for crystallization, Δμ, is negative (μcr < μl). In this case, cluster 
formation and growth is accompanied by a decrease in the Gibbs free energy because the surface 
term in the expression for ∆G is positive. In other words, the tendency for decreasing the Gibbs 
free energy is counteracted by the surface term, i.e., the surface contribution initially leads to an 
increase in ∆G with increasing crystal size. Therefore, small crystal clusters formed in the system 
disappear and only clusters larger than a critical size, Rc, can grow to macroscopic dimensions. 
As demonstrated in Figure 2a, the critical cluster size is defined by the maximum of ∆G(R). 
Systems showing such behavior are denoted as metastable. Metastable states are stable with 
respect to small fluctuations (generating clusters with sizes R < Rc) but unstable with respect 
to larger fluctuations leading to clusters with sizes R > Rc. Thus, viable (supercritical) crystal 
clusters that are capable of deterministic growth must exceed a certain minimum size. 
This phenomenon was predicted more than 100 years ago and is now seen directly in molecular 
dynamics simulations, e.g. Prado et al. (2019). It is this criticality that determines the decisive 
impact of these embryos (sub-critical) and nuclei (supercritical) on the nucleation processes 
(Kashchiev 2000; Kelton and Greer 2010; Neuville et al. 2017).
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Taking the chemical potential difference and the interfacial energy as size-independent 
(i.e., employing the so-called “capillarity” approximation), one can derive the critical 
cluster size and the value of ∆Gc at the critical size from the extreme condition ∆G = 0. 
These parameters are thus given by:

R
c

c  
2


G A
c

c c 
 

1

3

16

3

3

2
 



A Rc c 4 2 (2)

The concepts discussed above are illustrated in Figure 2a within the framework of the 
classical model of nucleation, whereby the change in the Gibbs free energy of cluster formation 
reaches a maximum ∆G = ∆Gc for the critical cluster size, R = Rc. In this model, clusters grow 
or decay while preserving their properties, so that size is the only parameter specifying their 
state (Schmelzer and Schick 2012). 

A more realistic picture of cluster formation is presented in Figure 2b, where not only the 
size but also the composition (described by the number of particles, ni, of two components) 
of the cluster may change. In this case, the critical cluster corresponds to a saddle point of the 
Gibbs free energy surface. The evolution to the new phase via the saddle is shown by the red 
curve. Figure 2c shows an alternative to the classical picture, which is similar to the spinodal 
decomposition (cf. Gutzow and Schmelzer 2013). In this case, the composition of the crystal 
cluster changes when a nearly constant size is reached and only after completion of this process 
are the kinetics governed by the growth of clusters with a roughly constant composition. In 
several cases in multicomponent systems (Gutzow and Schmelzer 2013), the latter path of 
evolution (Fig. 2c)—and not the classical picture (Fig. 2a)—may dominate phase transformation.

Critical clusters form by stochastic thermal fluctuations. According to underlying 
assumptions of statistical physics, the probability of such fluctuations can be expressed as a 
function of the minimum work of a reversible thermodynamic process. The minimum work 
to form a critical cluster is Wc = ∆Gc, where ∆Gc is given by Equation (2). This quantity, 
Wc, the work of critical cluster formation, plays a decisive role in nucleation theory. Then, 
after a certain time interval, τ (nucleation time-lag), the rate of nucleation, J (the number 
of supercritical clusters formed per unit time in a unit volume of the liquid), approaches a 
constant value, the steady-state nucleation rate, Js. In an early description of this initial period 
of nucleation by Zeldovich (cf. Gutzow and Schmelzer 2013), the nucleation rate as a function 
of time, t, was expressed by the simplified relation

J t J
t

( ) exp 





S

 (3)

where τ is the (true) nucleation time-lag.

Figure 2. The classical model of nucleation and possible generalizations. (a) With only one parameter 
used to describe the state of the cluster. (b) Change of Gibbs free energy in cluster formation when more 
than one parameter is used. (c) An alternative view to the classical scenario of crystallization in multi-
component liquids where both the size and composition change (Schmelzer and Schick 2012).
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The initial stage of nucleation observed in experiments is often described by the Kashchiev 
relation (Kaschiev 2000),

N t J
t t

m
m

t t
t

m

m
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 

 

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0
2

1
2

2 0

6
2

1
,  t0 and N = 0, t  ≤  t0 (4)

where t0 is the so-called time shift, the observed shift between the N versus time curves 
experimentally obtained by the double-stage or development method and after single-stage 
treatments (when a powerful electron microscope is available). This mathematical equation 
gives a relation for the number, N(t), of supercritical crystallites dependent on time, t. 
For longer times than the experimental induction time (tind) sometimes observed in N(t) versus 
time plots, Equation (4) can be approximated by

N t J t t    s ind dev t tind dev  



2

0
6

(5)

We emphasize that there is a difference between the tind-dev (observed after nucleation + 
development treatments) from the real nucleation induction time, tind-nucleation that would be 
obtained from a single-stage treatment. This is exactly what Equations (4) and (5) assume and 
is illustrated schematically in Figure 3. In this figure, t1 is the time when the first critical nucleus 
is formed. 

Over a sufficiently long time, Equations (3–5) approach steady-state nucleation conditions, 
i.e., (dN/dt)=Js = constant. With Wc = ∆Gc, the steady-state nucleation rate, Js, can be written as 
(Gutzow and Schmelzer 2013)

Js = J0 exp
k

c

B












G

T
= J0 exp

k
c
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










W

T
=  J0 


kBT

D

d0
4









 (6)

where D is the effective diffusion coefficient controlling nucleation and d0 is a size parameter 
or atomic jump distance. Experimental results that illustrate the establishment of a steady-state 
nucleation rate and its dependence on temperature are shown in Figure 4.

For the case shown in Figure 2a (congruent crystallization, assuming that the cluster 
properties do not change with size and are the same as those of the new macroscopic phase), 
D in Equation (6) is the diffusion coefficient of the structural building units in the liquid, and d0 

is their diameter. If several components of the liquid diffuse independently, D must be replaced 
by an effective diffusion coefficient, which is a combination of the partial diffusion coefficients 
and the concentrations of the different components in the liquid, and d0 must be replaced by the 
average size of these independently moving species (Gutzow and Schmelzer 2013).

In applications of this theory, due to the scarcity of diffusion data for oxide glass-formers, 
it is often assumed that the diffusion coefficient can be replaced by the Newtonian shear 
viscosity, η, via the Stokes–Einstein–Eyring equation:

D
T

d


kB

0
(7)

However, its applicability for temperatures around the glass-transition temperature 
(where homogeneous crystal nucleation is commonly observable) has been questioned even 
for stoichiometric systems, where decoupling of structural relaxation (expressed by viscosity) 
and atomic transport (represented by the diffusion coefficient) has often been reported 
in crystal growth experiments (e.g., Nascimento et al. 2011). However, to the best of our 
knowledge, such decoupling has not yet been proved for nucleation processes, and this is 
thus a relevant open problem. 
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The application of this expression is even more questionable for multicomponent systems. 
i.e., non-stoichiometric systems in which more than one phase crystallize upon heating (Fokin 
et al. 2019; Macena et al. 2020). Another issue is related to the case of highly viscous glass-
forming melts, for which a non-Newtonian viscosity should be employed to describe viscous flow 
(Gutzow and Schmelzer 2013). Leaving aside the above-listed reservations, by using the Stokes–
Einstein–Eyring relationship, the following expression results for the steady-state nucleation rate:

Js = 



k
exp

k
B c

B

T

d

G

T0
5












 (8)

To apply Equation (8) to the interpretation of experimental data, one has to determine the 
work of critical cluster formation, Wc = ∆Gc, i.e., to specify the thermodynamic driving force, 
Δμ, and the interfacial energy, σ in Equation (2). Assuming that the properties of the crystalline 
clusters are the same as those of the isochemical macroscopic crystals, one arrives at the simplest 
approximation by a Taylor expansion of Δμ(T) in the vicinity of the melting temperature:

Figure 3. Schematic illustration showing the variation 
of crystal number density vs. nucleation time. Here, the 
difference between nucleation induction time in two 
conditions, viz. double stage heat treatment—labora-
tory nucleation experimentation—and single-stage heat 
treatment, which is normally obtained by calculations  
Js development = Js

Nucleation

Figure 4. Experimental nucleation rate data for several silicate glasses. (a) Reduced crystal number den-
sity, (N(t)/Jsτ), versus reduced nucleation time, ((t−t0)/τ). The solid line is the master curve calculated from 
Equation (4). (b) Reduced nucleation rate versus reduced nucleation time calculated from Equation (4). 
(c) Experimental steady-state nucleation rate, Js, versus reduced temperature, T/Tm, for four stoichiometric 
glasses. Tm is the melting temperature. [Reprinted from Fokin VM et al. (2006) Homogeneous crystal nu-
cleation in silicate glasses: A 40 years perspective. J Non-Cryst Solids 352:2681–2714. Copyright (2006), 
with permission from Elsevier.]
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Δμ(T)=Δhm, 1










T

Tm

(9)

where Δhm is the enthalpy of melting per structural unit of the crystal and Tm is the melting 
temperature. This expression gives an upper bound for Δμ(T) because it neglects the difference 
in the specific heats of the crystal and SCL.

Since the interfacial energy of the critical nucleus is not directly measurable, it is normally 
evaluated using the Stefan–Skapski–Turnbull rule (Gutzow and Schmelzer 2013)

  
q

v
m

A mN1 3 2 3/ /
, qm = NADhm (10)

In Equation (10), qm is the molar enthalpy of melting, NA is Avogadro’s number, νm is the 
molar volume, and ϛ is a numerical factor equal to 0.4 to 0.6. By substituting these relations 
into Equation (8), its temperature dependence can be interpreted. The steady-state nucleation 
rate Js is zero at T = Tm, where Δμ = 0, cf. Equation (9). Starting from the melting point, the 
nucleation rate increases with decreasing temperature because of the decrease in the work 
of critical cluster formation, given by Equation (2), until this trend is overcompensated by 
the exponential decrease of the diffusivity (increase of viscosity) and results in a maximum. 
For typical cases of homogeneous nucleation in oxide glasses, the maximum occurs at 
Tmax ~ Tg, which corresponds to supercoolings of 0.5–0.6 Tm. (Fokin et al. 2006).

Homogeneous nucleation in supercooled glass-forming liquids. In most cases, using 
viscosity as a proxy to D(T) and a constant, fitted value of σ, this classical approach gives a good 
temperature dependence, at least for the high-temperature side above Tmax, but underestimates 
the steady-state nucleation rates by 20–55 orders of magnitude, e.g. Fokin et al. (2006). 
These huge deviations between experiment and theory can be resolved by the introduction of a 
size or temperature dependence of the interfacial energy, as discussed by Gibbs (1926) and later 
by others, particularly by Tolman, e.g. Gutzow and Schmelzer (2013). However, this solution 
does not solve other problems (Fokin et al. 2006), such as the alleged breakdown of the classical 
nucleation theory (CNT) for temperatures below Tmax (Cassar et al. 2020). Another possible 
solution, resulting from computer simulations and density functional computations, consists 
of accounting for the size dependence, not only of the surface tension, but also of the other 
properties of the critical clusters. The internal properties of the clusters generally depend on their 
sizes. Hence, the surface properties, including the surface tension, must also be size-dependent. 
Thus, this approach also leads to a size dependence of the surface energy. 

On the other hand, recent computer simulations favor the validity of CNT. Rather than 
using approximations or calculated values for the thermodynamic parameters and diffusivities, 
the CerTEV, São Carlos group employed parameters directly obtained from molecular dynamic 
simulations, without any fitting parameter, for different substances and demonstrated that the 
CNT is indeed a powerful predictor of crystal nucleation rates in some reluctant glass-formers, 
such as L-J, Ge (Tipeev et al. 2018, 2020) and ZnSe (Separdar et al. 2021). These findings 
should still be tested with regular glass-formers to generalize CNT´s applicability.

With a thermodynamic (generalized Gibbs) approach, which treats the cluster properties as 
a function of size and degree of supercooling, one concludes that the classical theory—assuming 
that the clusters have macroscopic properties and employing the capillarity approximation for the 
interfacial energy—overestimates the work of critical cluster formation, and hence, underestimates 
the steady-state nucleation rates. Therefore, the classical theory with the capillarity approximation 
serves as a tool for roughly estimating temperature dependence of nucleation rates, but it must be 
significantly improved to account for the above-specified effects for a detailed and quantitatively 
accurate description of the phenomenon (Gutzow and Schmelzer 2013).
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Heterogeneous Nucleation. So far, we have considered the case of crystal nuclei that form 
evenly within a defect-free homogeneous liquid. This mechanism is known as homogeneous 
nucleation. However, nucleation can be readily catalyzed by solid impurities, such as particles 
embedded in the volume or present on the external surface of glasses. Nucleation originating 
at such preferential sites is denoted as heterogeneous and can be described by the theoretical 
concepts outlined above if the work of critical cluster formation for homogeneous nucleation, 
Wc, is replaced by WcΦ. Here, Φ ≤ 1 is the nucleating activity of the heterogeneous nucleation 
core, and its value depends on the mechanism of catalysis. Heterogeneous nucleation dominates 
at small supercooling because of the lower work of critical cluster formation than that of 
homogeneous nucleation. At deep supercoolings, homogeneous nucleation may dominate due to 
much lower work of critical nucleus formation and the much larger number of sites (all “structural 
units” of the system) where homogeneous nucleation may proceed (Fokin et al. 2006).

One should note that, in certain cases, the evolution of the crystal phase may not proceed 
via the red saddle shown in Figure 2b, but via a ridge trajectory indicated by a yellow curve 
in Figure 2b, if such a trajectory is kinetically favored. This type of behavior may be expected 
to occur in crystallization occurring at deep supercoolings because of the defective and non-
stoichiometric nature of the crystals that might precipitate in the early stages of crystallization 
(Fokin et al. 2003).

Frequently, several different metastable phases may be formed in the supercooled liquid. 
As Ostwald suggested many years ago, in such cases the most favorable stable phase is not 
formed immediately. Instead, the final stable phase frequently crystallizes through several 
stages in which different metastable phases are formed; this is the so-called Ostwald’s rule of 
stages or Ostwald’s step rule.

2.1. Recent findings that warrant further research: Examples of experimental tests

The alleged CNT breakdown at Tmax. For a variety of oxide glass-forming liquids, 
the thermodynamic barrier for homogeneous crystal nucleation, Wc, apparently exhibits an 
unusual increase with decreasing temperatures below the experimental maximum nucleation 
rate, Tmax (Fig. 5), (Tmax ~ Tg) which is not compatible with predictions using the CNT. Abyzov 
et al. (2016) sought possible explanations for the increasing Wc by analyzing whether it could 
be caused by internal elastic stresses that arise due to density misfits between the crystal and 
liquid phases. Please recall that this factor was neglected in the derivation of Equation (6).

Figure 5. Calculated thermodynamic barrier for nucleation versus temperature for a series of sodium-
calcium silicate glasses. Wc exhibits an unusual increase with decreasing temperatures below the maxi-
mum nucleation rate, Tmax. [Reprinted from Abyzov AS et al. (2016) The effect of elastic stresses on the 
thermodynamic barrier for crystal nucleation. J Non-Cryst Solids 432:325–333. Copyright (2016), with 
permission from Elsevier.]
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For this purpose, the crystal nucleation rate and induction time data for two glasses that 
display significantly different density misfits between the crystalline and liquid states, lithium 
and barium disilicates, were employed to determine the work of critical cluster formation, Wc. 
Quantitative estimates of the effect of the elastic strain energy on Wc were carried out for both 
glasses. The interplay between stress development and structural relaxation of the SCL was 
accounted for. Their computations were performed taking into account not only the possibility 
of precipitation of the most stable crystal phase, but also the fact that different metastable phases 
might form during the early stages of nucleation. They showed that elastic strain energy indeed 
reduces the thermodynamic driving force for crystallization, and thus increases the barrier 
to nucleation. To better illustrate the effect of elastic stress, Figure 6 shows the experimental 
nucleation rates and the nucleation rates calculated disregarding and accounting for the stresses, 
and their relaxation for the stable and metastable phases with different melting temperatures, Tm, 
shown close to the respective curves. In all these cases, the calculated maxima of the nucleation 
rate are located at temperatures that are lower than the experimental maximum. It is clear that 
accounting for the elastic strain energy component in the reduction of the thermodynamic 
driving force decreases the nucleation rates (compare dotted and solid lines). However, as shown 
by the solid lines and data points, the calculated nucleation rates do not reach the experimental 
values, and only approach them for lithium disilicate glass (L2S) if a metastable phase having 
a very low melting point, say 1107 K, appears. Nevertheless, it is important to underline that 
at 1107 K with any further decrease in temperature, this (invented) metastable phase would 
be poorly ordered and unstable. Therefore, it seems that the sole effect of elastic strain cannot 
explain the aforementioned unusual behavior of the thermodynamic barrier at Tmax. Hence, a 
comprehensive explanation for this phenomenon is still lacking (Abyzov et al. 2016). 

In another attempt to explain the break at Tmax, Fokin et al. (2016) emphasized that the CNT 
fails to describe crystal nucleation rates in supercooled liquids if one uses a fixed size, do, of the 
“structural units.” Some results for silicate glasses support the view that, even for the so-called 

Figure 6. Nucleation rates for lithium disilicate 
(LS2) (a) and barium disilicate (B2S) (b) versus 
temperature. The symbols show measured values, 
the dotted lines show nucleation rates calculated 
without accounting for stresses. The solid lines show 
the rates taking into account the elastic stresses and 
their relaxation for the stable macroscopic phase 
(Tm = 1307 °C for LS2 and Tm = 1693 °C for B2S) 
and two metastable phases having different melting 
temperatures, Tm. [Reprinted from Abyzov AS et al. 
(2016) The effect of elastic stresses on the thermo-
dynamic barrier for crystal nucleation. J Non-Cryst 
Solids 432:325–333. Copyright (2016), with permis-
sion from Elsevier.] 
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case of stoichiometric (polymorphic) crystallization, the nucleating phase may have a different 
composition and/or structure as compared to the parent glass and the evolving macroscopic 
crystalline phase. This finding perhaps explains the discrepancies between calculated (by CNT) 
and experimentally observed nucleation rates in deeply undercooled glass-forming liquids 
(Fokin et al. 2007). Therefore, to reconcile the experimental data and CNT, Fokin et al. (2016) 
assumed an abnormal increase in the size of the structural units that control nucleation with 
decreasing temperature for temperatures below Tmax. This hypothesis was tested for several 
glass-forming liquids, where crystal formation proceeds by bulk homogeneous nucleation. 
This study could perhaps explain the temperature dependence of the nucleation rate in the range 
of T < Tmax, where the description of the nucleation rate by CNT drastically fails. The size of 
the structural units could be related to the size of the cooperatively rearranging regions (CRR), 
which are linked to dynamic heterogeneities in glass-forming liquids. 

Over the past few decades, a very important discovery in the study of glass-forming liquids 
was the finding of dynamic heterogeneity referring to the spatiotemporal fluctuations in local 
dynamics (Ediger 2000). The growth of the dynamic correlation length of the CRR as the 
temperature decreases toward the glass transition provides a possible approach to understand 
the dramatic slowdown of dynamics during vitrification (Flenner and Szamel 2010). Thus, more 
attention has been given to investigating the correlation between structural relaxation with dynamic 
heterogeneity and crystal nucleation in glass-forming liquids (e.g., Berthier 2011; Henritzi et al. 
2015; Gupta et al. 2016). For example, Gupta et al. (2016) referred to the temperature at which 
the classical critical nucleus size is equal to the average size of the CRR in a supercooled liquid 
as a “cross-over” temperature. They showed, for the first time, using published nucleation rate, 
viscosity, and thermo-physical data that the cross-over temperature for the lithium disilicate melt 
is very close to the temperature corresponding to the maximum in the experimentally observed 
nucleation rates. They suggested that the abnormal decrease in nucleation rates below the cross-
over temperature is most likely because, in this regime, the CRR size controls the critical nucleus 
size and the nucleation rate. This finding links, for the first time, measured nucleation kinetics to 
the dynamic heterogeneities in a supercooled liquid (Gupta et al. 2016). 

A more straightforward explanation was proposed recently by Cassar et al. (2020). 
They analyzed literature data for 6 glasses using a rigorous protocol and indicated that 
the alleged breakdown at Tmax is apparent only because most researchers are not patient to 
give long enough heat treatments to reach the steady-state regime. In other words, in most 
cases, incorrect nucleation rate data have been used to analyze the dynamics below Tmax. 
This problem warrants further investigation.

Imax versus Tgr. Recently, Abyzov et al. (2018) employed the Classical Nucleation Theory 
using a characteristic value of the pre-exponential constant and an average (temperature-
dependent) interfacial energy and derived an expression to estimate the maximum nucleation 
rates, Imax, as a function of the reduced glass transition temperatures, Tgr ≡ Tg / Tm (Tg is the 
laboratory glass transition temperature and Tm is the melting point or liquidus temperature). 
The theoretical predictions were surprisingly good for 51 out of 54 silicate glass-formers 
tested and describe the experimental trend well that Imax strongly decreases with increasing 
Tgr (Fig. 7). This trend also explains the well-known fact that only silicate glasses having a 
relatively low Tgr, Tgr < 0.6, show internal homogeneous nucleation in laboratory time/sample-
size scales (Abyzov et al. 2018).

Nucleation and the Kauzmann paradox. Zanotto and Cassar (2018) have tried to 
answer the key question whether any liquid can be cooled down below its melting point to 
the isentropic (Kauzmann) temperature, TK, without vitrifying or crystallizing. This long-
standing problem concerning the ultimate fate of supercooled liquids is one of the fundamental 
glitches in materials science. They used thermodynamic and kinetic data and well established 
theoretical models to estimate the TKS (kinetic spinodal temperature, at which the average 
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time for the first critical crystalline nucleus to appear becomes equal to the average relaxation 
time of a supercooled liquid) and the Kauzmann temperature for two substances—a borate 
and a silicate glass—which show measurable homogeneous crystal nucleation in laboratory 
time scales, as proxies of these families of glass-formers. For both materials, they found that 
the TKS are significantly higher than the predicted TK. Therefore, at ambient pressure, at deep 
supercoolings before approaching TK, crystallization wins the race over structural relaxation. 
Hence, the temperature of entropy catastrophe predicted by Kauzmann cannot be reached for 
the studied substances; it is averted by incipient crystal nucleation (Zanotto and Cassar 2018). 
As several approximations were made for the calculations and they required extrapolations to 
very low temperature, this is still considered an open relevant problem that warrants further 
research.  Computer simulations could be particularly relevant to shed light into this problem.

3. BASIC MODELS OF CRYSTAL GROWTH IN SUPERCOOLED LIQUIDS

Microscopy techniques are commonly used to determine crystal growth, U(T), rates in 
supercooled liquids. The simplest and most used method is to perform heat treatments for 
different periods at a given temperature and quench the material  to room temperature. Samples 
are then polished for microscopic analysis, where the crystal sizes on the sample surface or in 
their interior are measured. Then, the growth rates are calculated from the slopes of the crystal 
size radius versus time plots at different temperatures (Fig. 8). Hot stage microscopes can also 
be employed, in which case the growing crystals on the sample surface are directly observed in 
situ. Jiusti et al. (2020) have recently shown (Fig. 9) experimental values of crystal growth rates 
for 20 stoichiometric oxide glass formers. They observed that the temperature of maximum 
growth rate (Tmax) lies within the range of 0.90 to 0.98TL for all the materials investigated, 
whereas the maximum crystal growth rate, U(Tmax), varies seven orders of magnitude. 
For the sake of simplicity, they used the average value, Tmax = 0.94TL in their study for the 
derivation of their GFA predictor (see Section 4).

Figure 7. Maximum steady-state nucleation rate, Imax, versus reduced glass transition tempera-
ture, Tgr. The symbols refer to experimental data of 54 silicate glasses. The dashed lines were cal-
culated using constant values of C1 =c1κ(Tgr − 0.556) = 4.5 (top dashed red line) and C1 = 6.5 
(bottom dashed blue line). The solid lines were recalculated for temperature dependent C1 us-
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, where c1 and κ are the parameters that best fit the cur-

rent experimental data, e.g. for c1 = 3.45 (top solid red line) and c1 = 4.85 (bottom solid blue line). 
The experimental errors in Imax and Tgr are of the order of the symbol size. [Reprinted from Abyzov AS et 
al. (2018) Predicting homogeneous nucleation rates in silicate glass-formers. J Non-Cryst Solids 500:231–
234. Copyright (2018), with permission from Elsevier.] 
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Recently, Reis et al. (2016) proposed and tested a simpler and yet accurate technique capable 
of determining the crystal growth rate over a fairly wide temperature range by means of a single 
differential scanning calorimetry (DSC) run. Their method was based on using 50–200 μm 
thick samples with parallel rough surfaces so that crystal growth is effectively unidirectional 
and the crystallization fronts have a constant area during the entire crystallization process. 

Figure 8. Increase in the crystal radius with time for lithium disilicate glass heat treated at different growth 
temperatures. [Reprinted from Deubener J et al. (1993) Induction time analysis of nucleation and crystal 
growth in di- and metasilicate glasses. J Non-Cryst Solids 500:231–234. Copyright (1993), with permis-
sion from Elsevier.] 

Figure 9. Crystal growth rate versus reduced temperature for 20 stoichiometric oxide glass formers. 
U(Tmax) always occurs at a temperature between 0.90 − 0.98TL (highlighted region) (Jiusti et al. 2020).
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Growth rates are calculated from the expression U(T) = L × q × DSC(T)/Apeak, where DSC(T) 
is the value of the DSC crystallization curve at each temperature T, Apeak is the overall peak 
area, L is half the sample thickness, and q is the heating rate. This method was tested for 
different values of L and q for three glasses undergoing predominantly surface nucleation, 
which have distinctly different crystallization behaviors: stoichiometric lithium disilicate and 
diopside (CaO·MgO·2SiO2) and a nonstoichiometric lithium-calcium metasilicate. Growth 
rates spanning temperature intervals of more than 100 K, including temperature ranges where 
literature data were scarce due to experimental difficulties, were determined using a single 
DSC run. The resulting U(T) data were compared with literature data obtained using optical 
microscopy. The growth rates determined using the proposed method showed excellent 
agreement with the published data for both stoichiometric glasses and only small errors for the 
nonstoichiometric glass (Reis et al. 2016; Zheng et al. 2019). Hence, one can use one of these 
techniques to obtain crystal growth rate curves.

It is known that the properties of the crystal-liquid interface have a decisive influence on 
the kinetics of crystallization. Theoretical treatments of crystal growth have therefore focused 
closely on the interfacial structure and its effect on crystallization. With the assumption of 
congruent polymorphic crystallization, three standard models have been developed for treating 
crystal growth theoretically (e.g., Uhlmann 1982; Jackson 2004). These models are described 
briefly below: 

(i) Normal growth. The interface is pictured as rough at an atomic scale. Growth takes 
place at step sites, which represent a sizable fraction (0.5–1.0) of the interface. Assuming 
that this fraction does not change appreciably with temperature, the growth rate, u(T), can be 
expressed as 
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where f, fraction of preferred growth sites, is close to unity and Dµ is treated as a positive 
quantity.

(ii) Screw dislocation growth. This model assumes the interface is smooth but imperfect 
at an atomic scale. Growth takes place at a few step sites provided by screw dislocations that 
intersect the interface. The growth rate is still given by Equation (11), where f is now the 
fraction of preferred growth sites (on the dislocation ledges) at the interface. In this case, f is 
given approximately by f ≈ (Tm − T)/2pTm (Nascimento et al. 2011). More generally, according 
to Jackson (2004), f = (Dsm/kB)ξ holds, where ∆sm is the entropy of fusion per particle, and 
ξ is the number of nearest-neighbor sites in a layer parallel to the surface divided by the total 
number of nearest-neighbor sites. Factor  is the largest for the most closely-packed planes of 
the crystal, for which it is approximately equal to 0.5. 

For ƒ < 2, the minimum free energy configuration corresponds to half the available sites 
being filled and represents an atomically rough surface. In contrast, for ƒ > 2, the lowest free 
energy configuration corresponds to a surface where few sites are filled, and a few units are 
missing from the completed layer, and which represents an atomically smooth interface. 
Hence, for materials with ∆sm < 2kB, the most closely packed interface planes should be rough. 
For materials with ∆sm < 4kB, the most closely-packed surfaces should be smooth, the less 
tightly packed surfaces rough, and the growth anisotropy rate large.

(iii) Surface nucleation or two-dimensional growth. According to this model, the interface 
is smooth and perfect at an atomic scale, and thus free of intersecting screw dislocations and 
growth sites. Growth then takes place by the formation and growth of new two-dimensional 
nuclei at the interface. In this case, the growth rate is expressed by
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where C2 and C3 are parameters that determine the time required for the formation of the 
two-dimensional nucleus relative to that required for its propagation across the interface, 
respectively.

Possible growth modes are illustrated in Figure 10. Similarly to nucleation, the interplay 
between increasing driving force for crystallization, Δμ, and decreasing diffusion coefficient 
(or increase in viscosity) with decreasing temperature results in a maximum of the crystal 
growth rates. This maximum is located at higher temperatures than that of the maximum of the 
steady-state nucleation rate shown in Figure 4c.

Other growth modes exist which are limited not by processes at the liquid-crystal 
interface but by atomic transport towards the interface. A specific example is a diffusion-
limited segregation, which is of particular importance in multicomponent systems. Accounting 
for size effects on the growth kinetics, the rate for such a growth mode can be expressed as 
(e.g., Slezov 1999; Jackson 2004).
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where B is a combination of parameters describing the liquid under consideration, which are 
proportional to the effective diffusion coefficient governing the rate of supply of the different 
components to the growing or dissolving cluster.

Equation (13) and its modifications for other growth modes serve as a basis for the 
theoretical description of the competitive growth of clusters denoted as coarsening or Ostwald 
ripening. In these late stages of phase formation, larger clusters may continue to grow only 
when subcritical crystals are dissolved. The theoretical description of this process was first 
developed by Lifshitz and Slezov (cf. Jackson 2004). Today it is often referred to as the 

Figure 10. Crystal growth rates for Li2O∙2SiO2 glasses obtained by different authors. The lines correspond 
to the screw dislocation mechanism (full curve) and two-dimensional surface nucleated growth (dashed 
curve). (Td: decoupling temperature, Tg: glass transition temperature, Tm: melting temperature). [Reprinted 
from Nascimento et al. (2011) Dynamic processes in a silicate liquid from above to below the glass transi-
tion. J Chem Phys 135:194703, with the permission of AIP Publishing.]
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L(ifshitz)S(lezov)W(agner) theory. This theory provides expressions for the average size, R, 
and the number, N, of supercritical clusters in the system as a function of time. For diffusion-
limited growth (Eqn. 13), one obtains

R t3  , N
t


1 (14)

An account of the effect of elastic stresses on coarsening, which leads to qualitative 
modifications of the coarsening behavior, is reviewed in (Slezov 1999).

3.1 Experimental tests

Nascimento and Zanotto (2006) have analyzed extensive literature data on crystal growth 
rate and viscosity in the temperature range between 1.1Tg (glass transition temperature) and 
the melting point of silica (SiO2). They selected U(T) and η(T) data for the same silica glass 
type, having similar impurity contents, and confirmed that the normal growth model describes 
the experimental U(T) data quite well in this wide undercooling range. They then calculated 
effective diffusion coefficients from crystal growth rate, DU, and from viscosity, Dη (through 
the Stokes–Einstein/Eyring equation) and compared these two independent diffusivities with 
directly measured self-diffusion coefficients of silicon and oxygen in the same silica glass 
type. Their results showed that silicon (not oxygen) controls the diffusion dynamics involved 
in both crystal growth and viscous flow in undercooled silica. This study not only unveiled 
the transport mechanism in this important glass-forming material but also validated the use of 
(easily measured) viscosity to account for the unknown transport term of the crystal growth 
expression in a wide range of undercoolings (Nascimento and Zanotto 2006).

Later on, Nascimento and Zanotto (2010) analyzed the kinetic coefficient of crystal growth, 
Ukin ~ η−ω , proposed by Ediger (2008), which indicated that the Stokes–Einstein/Eyring (SE/E) 
equation does not describe the diffusion process controlling crystal growth rates in fragile glass-
forming liquids. Ukin was defined by Ediger (2008), using the normal growth model and tested for 
crystal data for inorganic and organic liquids covering a viscosity range of about 104–1012  Pa.s. 
Afterwards, Nascimento and Zanotto 2010 revisited their finding considering two other models: 
the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models 
for nine undercooled oxide liquids, in a wider temperature range, from slightly below the 
melting point down to the glass transition region Tg, thus covering a wider viscosity range: 
101–1013  Pa.s. Then, they normalized the kinetic coefficient (DU, which scales with η−ω, and 
the exponent ω supposedly depends systematically on the fragility of the liquid: the greater the 
fragility, the lower the value of ω) for the SD and 2D growth models. These recalculated kinetic 
coefficients restored the ability of viscosity to describe the transport part of crystal growth rates 
(DU ∼ 1/η, ω ∼ 1) from low to moderate viscosities (η < 106  Pa s), and thus demonstrated that 
the SE/E equation indeed worked well in this viscosity range for all systems tested. For strong 
glasses, the SE/E equation described low to high viscosities, from the melting point down to 
Tg. However, for at least three fragile liquids, diopside (for Td = 1.08Tg, η = 1.6 × 108  Pa s), lead 
metasilicate (at 1.14 Tg, η = 4.3 × 106  Pa s), and lithium disilicate (at 1.11Tg, η = 1.6 × 108  Pa s), 
there were clear signs of a breakdown of the SE/E equation at these viscosities. Nascimento and 
Zanotto demonstrated that viscosity data cannot be used to describe the transport part of the 
crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of Tg. 

In 2015, Schmelzer et al. (2015), derived at a relationship that allows a correlation of 
the decoupling temperature with the glass transition temperature and the liquid’s fragility. 
The results were confirmed by experimental data. More recently, Cassar et al. (2017) suggested 
that above the temperature range 1.1Tg–1.3Tg, crystal growth and viscous flow are controlled 
by the diffusion of silicon and lead in lead metasilicate glass. Below this temperature, 
crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. 
Therefore, Td marks the temperature where decoupling between the (measured) cationic 
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diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates 
occurs. These authors reasonably proposed that the nature or size of the diffusional entities 
controlling viscous flow and crystal growth below Td is quite different; the slowest is the one 
controlling viscous flow, but both processes require cooperative movements of some larger 
structural units rather than jumps of only one or a few isolated atoms (Cassar et al. 2017). 

Finally, Cassar et al. (2018a) tested and analyzed 4 different approaches to compute DU. 
The classical approach (DU ~ η−1) and the fractional viscosity approach of Ediger (DU ~ η−ω) were 
not able to describe the crystal growth rates near the glass transition temperature of supercooled 
diopside liquid (CaMgSi2O6). However, the proposed Arrhenian expression to calculate DU—
gradually changing from a viscosity-controlled to an Arrhenian-controlled process—was able 
to describe the available data in the whole temperature range and yielded the lowest uncertainty 
for the adjustable parameters. Their results corroborated the previous finding that viscous flow 
ceases to control the crystal growth process below the decoupling temperature. Figure 11 shows 
the overall results of this new approach, i.e., the regression of crystal growth rate data when DU 
is calculated following the considerations that DU gradually changes from viscosity-controlled 
to Arrhenian-controlled (see Eqn. 15). All available data are well described by the regression. 
The four adjustable parameters needed for this approach: σ, Ea, D0, and Td (see Eqn. 15). 
The regression yielded σ = 0.223(9) J/m2, Ea = 650(50) kJ/mol, ln(D0) = 31(6), and 
Td = 1100(30) K, with RMS = 0.11 (D0 in m2/s) (Cassar et al. 2018a).
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kB , kB is the Boltzmann constant and d is the diameter of the moving entity that 

controls viscous flow, usually assumed to be equal to d0 (jumping distance of a moving entity).

The above relationships, theory, and fundamentals allow one to describe the growth of 
crystals with smooth planar or spherical interfaces advancing in the liquid. However, more 
complex growth patterns do exist, and more complex models of growth are required to properly 

Figure 11. Regression curve of crystal growth rate data with DU considering Arrhenian-controlled diffu-
sion below Td and Equation (15) (Cassar et al. 2018a). (Td: decoupling temperature, Tg: glass transition 
temperature)
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take into account possible interfacial instabilities, surface roughening, or other growth modes such 
as diffusion-limited aggregation (Jackson 2004). With such complex growth modes, a variety of 
intricate and beautiful crystal shapes may evolve, some of which are illustrated in Figure 12.

4. OVERALL CRYSTALLIZATION AND GLASS-FORMING ABILITY: 
THE JOHNSON–MEHL–AVRAMI–KOLMOGOROV APPROACH

Crystallization of supercooled liquids occurs by a combination of crystal nucleation and 
growth. The kinetics of such processes is usually described by a theory independently derived 
between 1937 and 1941 by Johnson, Mehl, Avrami, and Kolmogorov (Kolmogorov 1937; 
Johnson and Mehl 1939; Avrami 1939, 1940, 1941) denominated (JMAK theory). In this 
approach, the isothermal evolution of the total amount of the crystalline phase is described as 
a function of time, accounting simultaneously for nucleation and growth. The basic equations 
of this approach can be developed as follows.

Let us assume that, in a time interval dt′(t′, t′+dt′), a number dN(t′) = J(t′)[V − Vn(t′)] of 
clusters of critical size is formed in the volume [V − Vn(t′)]. Here, V is the initial volume of the 
glass-forming melt and Vn(t′) the volume already crystallized at time t′. These clusters grow 
and, at time t, occupy a volume
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where  is a shape factor and the integral term describes the growth of the dN(t′) clusters formed 
at t′ until time t, i.e., in the time interval (t − t′), the exponent n is the number of independent 
spatial directions of growth. Introducing the ratio, αn(t)=(Vn(t)/V), between the current volume 
of the crystalline phase versus the initial volume of the glass-forming melt, one has

Figure 12. Crystal morphologies formed by nucleation and growth in oxide glass-formers as observed 
by optical microscopy (crystal sizes from 5 to 100 mm). From top left to bottom right: (i, ii, iv) LS crys-
tals nucleated on defects of a CaO∙Li2O∙SiO2 glass surface during its preparation via melting–cooling 
(iii) Crystallization propagating from the surface towards the center of a CaO∙Li2O∙SiO2 glass specimen; 
lithium metasilicate crystals nucleated on two perpendicular surfaces and grew towards the sample center. 
(v) Surface of a CaO∙Li2O∙SiO2 glass sample after cooling a melt in a DSC furnace; the large-faceted 
and needle-like crystals are calcium and lithium metasilicates, respectively. (vi) Internal crystallization 
in a Ti-cordierite glass; pure stoichiometric cordierite (2MgO∙2Al2O∙5SiO2) glass underwent only sur-
face nucleation, but the same glass doped with more than 6 mol% TiO2 shows internal crystallization of 
μ-cordierite. (vii) Needle-like crystals in CaO∙Li2O∙SiO2 eutectic glass formed by internal crystallization 
in the temperature range between the solidus and the liquidus; these wollastonite crystals appear on the 
cooling path. (viii) Star-like NaF crystals inside a photo-thermo-refractive (PTR) glass (treatment at a high 
temperature near the solubility limit).
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Integration, i.e., taking the sum over all the time intervals dt′ in the range of (0, t), yields
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Provided the nucleation and growth rates are both constant; one reaches as a special case
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Conversely, if a number N0 of supercritical clusters is formed immediately at time t = 0, 
growing in n independent spatial directions, one arrives instead at

n
n nt gN u t     1 0exp (20)

The analysis of the time dependence of the an-curves thus leads to the indirect determination 
of nucleation and growth kinetics.

The JMAK theory has been employed in numerous studies to analyze experimental data and 
determine the degree of crystallinity as a function of time in both isothermal and non-isothermal 
heat treatments of glasses. Emphasis has usually been given to the determination of the so-called 
Avrami coefficient m = n+1 obtained from the slopes of experimental ln[ln(1 − α)−1] versus ln(t) 
plots. An overview of various nucleation and growth mechanisms and the resulting values of the 
Avrami coefficient are given in Table 1 (Zheng et al. 2019). However, there is some uncertainty 
in such analyses, because different combinations of nucleation and growth laws may lead to the 
same Avrami coefficient. For this reason, a separate investigation of the growth kinetics may be 
required to reach definite conclusions (Johnson and Mehl 1939; Gutzow and Schmelzer 2013).

It is important to underline that the JMAK theory, as given by Equations (19) and (20), 
does not apply directly to non-isothermal processes. These two equations are derived on the 
assumption of constant nucleation and growth rates, which does not hold in non-isothermal 
processes. Therefore, in non-isothermal cases, the general relationships, Equations (17) and 
(18) must be employed to describe overall crystallization. 

Such considerations must also be taken into account when the JMAK formalism is 
employed to determine whether a liquid will transform into a glass upon cooling or whether it 
will crystallize. Following Uhlmann (1982), one can consider a supercooled frozen-in liquid a 
glass if, after vitrification, the volume fraction of the crystal phase does not exceed a certain value 
of, say, 10−6 (the detection limit by microscopy). Using appropriate expressions for nucleation 
and growth rates, one can then compute (through Eqn. 19 for isothermal conditions) the time 
required to reach the volume fractions thus defined. In this way, one arrives at the so-called 
T(ime)T(emperature)T(ransformation)-curves (TTT-curves) exemplified in Figure 13 (cf. also 
Kelton and Greer 2010 and Fig. 10.8 in Gutzow and Schmelzer 2013). These curves give some 
insight into the characteristic time scales required to prevent measurable crystallization effects. 
One should keep in mind, however, that these curves overestimate the critical cooling rates for 
glass formation by about one order of magnitude because, as mentioned earlier, crystallization 
upon cooling proceeds under non-isothermal conditions. 
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Using experimental crystal nucleation and growth rate data, Rodrigues and Zanotto (2012) 
calculated TTT-curves for different isothermal and non-isothermal crystallization situations. 
They also accounted for the breakdown of the Stokes–Einstein–Eyring (SEE) equation at a 
temperature Tb (somewhat higher than Tg) where the effective diffusion coefficient that controls 
crystal growth decouples from the value of diffusivity calculated by the SEE equation (Eqn. 7). 
In Figure 13, we show an example of such a curve for a stoichiometric BaO∙2TiO2∙2SiO2 

glass, which undergoes copious internal homogenous crystal nucleation. The agreement with 
experimental data (which, in this case, were also obtained in isothermal conditions) is quite 
impressive, indicating that the JMAK equation is accurate if all the assumptions involved in its 

Figure 13. Simulated TTT-curves for a BaO∙2TiO2∙2SiO2 glass with crystallized volume fraction α = 0.05 
using, in one approach, the screw dislocation growth model both above and below Td (screw dislocation– 
dashed line, triangles), and in the other the Arrhenius equation below Td (solid line, spheres). Experi-
mental data points (black stars) obtained at 993, 1003, 1013, and 1023 K. (Td: decoupling temperature). 
[Reprinted from Rodrigues and Zanotto (2012) Evaluation of the guided random parametrization method 
for critical cooling rate calculations. J Non-Cryst Solids 358:2626–34 Copyright (2012), with permission 
from Elsevier.]

Table 1. Values of the Avrami exponent (n) for several crystallization mechanisms 
(Zheng et al. 2019).

Polymorphic change, 
interface-controlled growth

n Diffusion-controlled growth n

Increasing nucleation rate, 3D > 4 Increasing nucleation rate, 3D > 2.5

Constant nucleation rate, 3D 4 Constant nucleation rate, 3D 2.5

Decreasing nucleation rate, 3D 3–4 Decreasing nucleation rate, 3D 1.5–2.5

Zero nucleation rate 
(nucleation site saturation) 3D

3 Constant nucleation rate, 2D 2

Constant nucleation rate, 2-D (plates) 3 Zero nucleation rate, 3D 1.5

Zero nucleation rate, 2-D (plates) 2 Constant nucleation rate, 1D 1.5

Constant nucleation rate 
(nucleation site saturation), 1D

2 Zero nucleation rate, 2D 1

Zero nucleation rate, 1D (needles) 1 Zero nucleation rate, 1D 0.5

Note: D: growth dimensionality
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derivation are met. From such curves, one can calculate very important properties of supercooled 
liquids—namely the glass-forming ability, and the glass stability against crystallization on heating.

Glass forming ability (GFA) is the propensity of a melt to vitrify upon cooling. Quantifying 
glass-forming ability is of utmost importance for the design of new glass compositions, but 
it is a laborious, time-consuming process. Several methods are available to estimate the GFA 
(Shelby 2005). The ease of glass formation can be defined by the critical cooling rate (CCR) 
required to prevent crystallization of a certain sample. The critical cooling rate is a quantitative 
measure of the ability of a liquid to vitrify and is defined as the slowest rate at which a melt can 
be cooled from its liquidus temperature (Tm) to below the glass transition temperature (Tg)—
which is composition and thermal history dependent—without “detectable” crystallization, 
i.e., a crystallized volume fraction normally assumed to be in the range of 10−6–10−2 (such 
as α in Fig. 13). The smaller the CCR, the greater the glass forming ability of a liquid. Thus, 
CCR is a very important characteristic parameter of liquids that should be known to predict 
the ease or difficulty of glass formation, and, hence, to determine the processing conditions 
of any glass (Scherer 1991). For instance, the CCR of metallic glasses lie in between 106 to 
101 K/s, whereas commercial oxide glasses, such as window glass, have a CCR of < 10−2 K/s. 

Figure 14 shows the TTT-curves of two glass-forming melts whose internal 
(homogeneous) nucleation rates differ by 15 orders of magnitude. Anorthite glass shows a 
maximum nucleation rate of approximately 102 m−³.s−1

, whereas fresnoite has a maximum 
of 1017 m−³.s−1

. Even for a small density of surface nucleation sites (Ns), the nose of the TTT 
curves for heterogeneous surface nucleation leads to shorter times compared to the nose of 
the homogeneous nucleation TTT curves. The equivalent NS for a heterogeneous TTT curve 
to exhibit the same CCR as the homogeneous case would be around 10−2 and 10−1 sites/m² 
for anorthite and fresnoite glasses, respectively.

Above all, even more important than measuring or estimating the GFA of different substances 
is the ability to predict the GFA as a function of composition. While this is not yet possible for 
complex, multicomponent systems, research efforts should and are moving into this direction 
(Varshneya and Mauro 2019; Zheng et al. 2019). For example, Jiusti et al. (2020) have recently 

Figure 14. Temperature versus time in log scale: TTT curves for anorthite (CaO.Al2O3.2SiO2) (left), and 
fresnoite (2BaO.TiO2.2SiO2) (right) considering homogeneous nucleation (—) and heterogeneous surface 
nucleation for NS = 105 (-—-)  and NS = 101 (·····). The nose times seem to be close to each other, however 
the time scale is logarithmic. (Jiusti et al. 2020)
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derived a mother parameter, GFA = 1/CCR ∝ [U(Tmax) × TL]−1, which strongly correlates with 
the experimental critical cooling rates of oxide glass-formers. A simplified version derived from 
the mother parameter—which does not need (scarce) crystal growth rate data and only relies 
on (easily measurable or calculable) viscosity, η, and TL—GFA ∝ [η(TL) / TL

2]—also correlates 
well with the CCR of several oxide compositions. This new GFA parameter corroborates the 
widespread concept that substances having high viscosity at TL, and a low TL can be easily 
vitrified, and provides a powerful tool for the quest and design of novel glasses.

4.1 Glass stability against crystallization

While GFA is defined as the resistance to crystallization of a supercooled liquid during 
cooling, glass stability is defined as the resistance to devitrification of a glass or supercoooled liquid 
during heating. Glass forming ability is most important during processes requiring vitrification, 
while glass stability (GS) is very important during operations involving thermal treatment of 
an existing glass, such as annealing, tempering or treatment for ceramization. Although these 
two properties are not identical, they are frequently confused in the literature and technological 
practice. It is often (reasonably) assumed that poor glass-forming ability automatically leads to 
poor glass stability, and vice-versa (Shelby 2005). GS is frequently characterized by the difference 
between the onset of the glass transformation region (Tg) and the DSC crystallization peak (Tc) 
or onset of crystallization peak (Tx) for a sample heated at a particular rate. A drawback of this 
method is that these two temperatures depend not only on the chemical composition but also 
on glass particle size and heating rate; hence these two experimental parameters should be kept 
constant for a proper evaluation of glass stability. Some authors argued that the quantity (Tc − Tg) 
should be normalized by Tg, Tc, Tx, or Tm of the crystalline phase, to compare the behavior of 
glasses which crystallize in very different temperature ranges. The most well-known parameter 
is the Hrubý number, which is defined by Hb = (Tx − Tg)/ (Tc − Tg). Stable glasses have a Hb > 0.4.

However, there is no unanimously accepted criterion for glass stability. As long as samples 
of different compositions are compared using identical characteristics (particle size and heating 
rate), several of the proposed parameters (e.g., Hrubý), especially those containing all the three 
characteristic temperatures, yield similar results. Interested readers are encouraged to refer 
to a comprehensive review by Zheng et al. (2019), which compares various GS parameters 
determined by DSC.

5. PERSPECTIVES

Significant advances in the understanding and control of crystal nucleation and growth 
processes in glass-forming liquids have been achieved over the last five decades. It is now 
well-established that all materials can vitrify when subjected to sufficiently fast cooling 
from the liquid state. Thus, novel reluctant glass-forming materials, such as certain metallic 
and chalcogenide glasses, with unusual properties, have been successfully obtained by 
very fast quenching. Moreover, controlled, catalyzed internal crystallization of specific 
glasses has led to a variety of advanced glass-ceramics that are now available on the market. 
More profound insights into glass crystallization processes, such as precise prediction of 
nucleation and growth rates, and critical cooling rates for glass formation, based solely on materials 
properties, will depend critically on new developments in nucleation and growth theories and 
computer simulations. Artificial Intelligence techniques could be a major player in this context 
(Cassar et al. 2018b, 2021; Alcobaça et al. 2020; Montazerian et al. 2020).

Furthermore, in their recent comprehensive review, Zheng et al. (2019) elaborated on 
the versatility and utility of several differential scanning calorimetry (DSC) techniques for 
examining the dynamics related to nucleation, growth, glass-forming ability and stability. 
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For example, DSC is very useful for providing estimates of the temperature range where 
significant nucleation occurs. When properly used, isothermal DSC runs can yield useful 
information regarding crystallization processes, including the crystal number density, 
nucleation and growth kinetics, the activation energy for overall crystallization, and the 
Avrami constant. In addition to DSC, advanced instruments, such as Transmission Electron 
Microscopy (TEM), Anomalous Small Angle X-ray Scattering (ASAXS), Small-angle Neutron 
Scattering (SANS), X-ray Absorption Spectroscopy (XAS), Raman Spectroscopy (RS), 
Nuclear Magnetic Resonance (NMR), Advanced Optical Spectroscopy (OS) and others have 
been recently employed to study nuclei of critical sizes and medium range order in glasses. 
They provide critical insight into the complicated and rapidly changing environments in 
which crystallization happens, helping us to shed light over nucleation and crystallization 
processes in glass-forming materials. Interested readers are referred to a recent book authored 
by Neuville and coworkers (Neuville et al. 2017).

Despite the many advances achieved in understanding crystallization, some key problems 
remain open. Among the most notable, we remark the following: 

(i)	 Specification of the bulk (structure, composition, density) and surface properties of 
the critical nuclei as a function of size. 

(ii)	 Description of the temperature dependence of the crystal nucleus–liquid interfacial 
energy. 

(iii)	 The applicability of the Stokes–Einstein–Eyring (viscosity) relationship in calculating 
the effective diffusion coefficients that control crystal nucleation. 

(iv)	 Unveiling the cause of the reported breakdown of the CNT in describing the 
temperature dependence of experimental nucleation rates below Tg. 

(v)	 A deeper understanding of the relationship between the molecular structure of glass-
forming melts and the nucleation mechanism. 

(vi)	 The relation between the sizes of supercritical nuclei vis-à-vis the sizes of co-
operatively rearranging regions (CRR) of heterogeneous dynamics (DHD) existing 
in the structure of viscous liquids 

(vii)	Comparison of the estimated (by extrapolation) structural relaxation time and the 
characteristic time for crystallization of glass-forming liquids at the (predicted) 
Kauzmann temperature, TK. Such a comparison could resolve the paradox, following 
Kauzmann’s suggestion of the possibility that the putative state of negative entropy 
may never be reached because at such temperatures, crystallization would always 
intervene before structural relaxation of any SCL.

All these problems, in addition to several others not mentioned here, such as the 
development of novel glasses and glass-ceramics, having exotic, unusual compositions and 
combination of properties, corroborate that glass crystallization is a very dynamic, exciting 
research topic.
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