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A B S T R A C T   

The validity of the Classical Nucleation Theory (CNT), the standard tool for describing and predicting nucleation 
kinetics in metastable systems, has been under scrutiny for almost a century. While the CNT is commonly 
employed to describe liquid → crystal and liquid ↔ vapor phase transitions, its application to the crystal → liquid 
case has been limited because of the experimental challenges in achieving superheating states and detecting 
homogeneous liquid nucleation. In this study, we performed comprehensive molecular dynamics (MD) simula
tions of spontaneous melting of a superheated AlCu crystal under atmospheric pressure at five temperatures, 
covering a superheating range of T/TL = 1.1–1.3, where TL is the liquidus temperature. Two realistic AlCu models 
were investigated: one described by the modified embedded atom method (MEAM) and the other by an inter
atomic potential generated by an artificial neural network machine learning (ML) approach, extensively trained 
on an ab initio dataset of liquid and crystal configurations. Fifty independent melting events were simulated at 
each temperature. By analyzing the distribution of melting times using the Poisson law, the homogeneous 
nucleation rate was determined through the mean lifetime method. Additionally, the Zeldovich factor, critical 
nucleus size, and work of formation were obtained using the mean first-passage time method, utilizing the 
disorder parameter based on atomic displacements (liquid-like atoms in the superheated crystal) as the reaction 
coordinate. Also, the effective atomic transport coefficient across the metastable crystal/critical liquid nucleus 
interface was determined by MD simulations as the interfacial attachment coefficient for nuclei growth rates. 
Using these simulation-generated data, the theoretical nucleation rates were calculated by the CNT with no 
fitting parameters. We found excellent agreement between the theoretically and MD-computed liquid nucleation 
rates for both MEAM and ML crystals. Notably, the effective solid-liquid interfacial free energy value obtained 
from the MD data aligns with its recent experimental measure. Moreover, the CNT qualitatively and quantita
tively described the underlying details of liquid drop nucleation in our ML solid, unprecedentedly and accurately 
reproducing the kinetic prefactor and the size, formation energy, and growth rate of the critical nuclei. Thus, the 
melting of the AlCu model created through machine learning-processed quantum calculations, that is, not relying 
on hand-crafted interatomic potential functions, was successfully described by the CNT phenomenological 
formalism, without any adjustable parameters. This finding confirms the CNT as a very reliable descriptor of 
homogeneous nucleation in the superheated AlCu alloy and generalizes this theory as a powerful tool for 
analyzing and predicting the kinetics of crystal-liquid transitions.   

1. Introduction 

Crystalline solids usually start melting from the surface [1,2,3,4,5,6]. 

Indeed, because a solid surface is completely wetted by its own liquid, 
the creation of a liquid layer on a solid requires no work of formation of a 
new surface. As a result, it is very difficult to superheat a solid with an 
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open surface; hence, crystals normally melt just above their equilibrium 
melting temperature. However, superheating can be achieved in certain 
special experimental conditions [7,8,9,10,11,12,13,14,15,16]. For 
example, surface melting can be suppressed if a solid is rapidly heated 
throughout its volume while maintaining a surface temperature lower 
than the melting temperature [7]. Superheating can also be achieved in 
laser-heated tiny crystalline clusters inserted into a medium with a 
higher melting temperature [16]. Finally, considerable superheatings 
can be achieved by ultrafast shock-wave compression of solids [14,15]. 
Employing shock-wave loading and intense laser irradiation, super
heatings up to 43 % higher than the corresponding melting points were 
obtained for a number of elements and simple compounds [17]. 

Various theoretical approaches can be used to predict the maximum 
attainable superheating, based on thermodynamic, mechanical, and 
vibrational criteria [18,19]. The famous Lindemann melting criterion 
[20], based on the Einstein’s theory of specific heat of crystals, states 
that melting occurs when the average atomic oscillation amplitude ex
ceeds a certain threshold value; however, its universal applicability is 
still under debate [21,22,23]. Born proposed that the loss of stability in 
an unstressed crystal is linked to the vanishing of its shear modulus [24]. 
The achievable superheatings can also be described using a kinetic cri
terion based on the Classical Nucleation Theory (CNT) [25,26,27]. In 
this way, the maximum superheating corresponds to a certain (arbitrary 
defined) threshold nucleation rate [28,29]. 

The CNT [28,30,31] can also be utilized to describe the kinetics of 
homogeneous liquid nucleation in superheated isotropic crystals. Ac
cording to this theory, the work of formation of a spherical critical nu
cleus, W*, is given by. 

W* =
16πγ3

3ρ2
*(Δg + e)2 (1) 

where γ is the solid–liquid interfacial free energy, ρ* is the number 
density of the critical nucleus (i.e., the inverse of its molecular volume), 
e is the elastic strain energy, and Δg is the difference between the 
chemical potentials of liquid and crystal, i.e., the thermodynamic 
driving force for liquid nucleation defined by the difference between the 
nucleation and liquidus temperatures. 

The work required for nucleation corresponds to a critical nucleus of 
radius. 

R* =
− 2γ

ρ*(Δg + e)
(2) 

It should be noted that e takes positive values, whereas Δg is negative 
in the metastable region. For a phase transition to occur, the condition 
Δg+e < 0 must be met, meaning that the energy gained from the for
mation of a thermodynamically more stable phase must exceed the en
ergy cost of establishing a field of internal stresses. However, just 
beyond the melting line, at small superheatings, Δg+e > 0 can be 
established, resulting in the absence of homogeneous nucleation [32]. 

The stationary nucleation rate, J, i.e., the average number of viable 
nuclei formed per unit time and volume, is given by [33]. 

J = ρD *Z*exp
(

−
W*

kBT

)

(3) 

where ρ is the crystal number density, kB is the Boltzmann constant, 
D * is the effective atomic transport coefficient across the metastable 
phase/critical nucleus interface, and Z* is the dimensionless Zeldovich 
factor, which characterizes the curvature of the nucleation barrier in the 
vicinity of critical size, 

Z* =

(
W*/kBT

3πn2
*

)1/2

=

(
4R2

*γ
9kBTn2

*

)1/2

=

(
|Δg + e|
6πn*kBT

)1/2

(4) 

where n* is the number of atoms in the critical nucleus. 
The Turnbull-Fisher expression, initially derived for liquid crystal

lization from the absolute reaction rate theory [34], may be adopted 

[30,35] to evaluate the transport coefficient for crystal melting: 

D * = i*
kT
h

exp
(

−
E*

kT

)

(5) 

where i* is the number of atoms on the surface of the critical nucleus, 
h is the Planck constant, and E* is the activation energy for the transition 
of atoms from the metastable substance to the new-phase nuclei. How
ever, E* is normally unknown and usually estimated as the activation 
energy for atomic diffusion in the medium. This activation energy will 
be determined later in this study. 

Experimental measurement of all variables in Eqs. 1–5 is extremely 
difficult or even impossible, since nucleation typically occurs at the 
nanometer scale and on timescales of pico- to nano-seconds. Notable 
advances have been made in experiments involving colloidal systems 
[36,37,38]. Their ~ 1 µm diameter particles were tracked individually 
by different microscopy techniques, allowing the direct observation of 
crystal lattice destruction during melting. However, some nucleation 
parameters, such as interfacial free energy and critical cluster size, 
cannot be directly observed. As a result, a comprehensive examination 
of theoretical nucleation models is very challenging [4,17,30,35,39]. 

In the past few decades, computer simulations have become a potent 
tool in phase transition research [40]. Specifically, molecular dynamics 
(MD) simulations enable the study of homogeneous melting at an 
atomistic level and on a timescale < 1 µs, thus yielding thought- 
provoking insights into the melting mechanisms of various crystals: 
Lennard-Jones (LJ) [41,42,43], Al [44,45,46,47], Al-based alloys [47], 
Cu [48,49], Fe [50], Ta [21,22,49], Pb [51], CoCrFeNiMn [23], methane 
hydrates [52], benzene [53], and ice Ih [54,55,56]. Through advanced 
computational methods, MD simulations provide uniquely valuable in
formation about the properties of nanosized nuclei, thus serving as a 
powerful tool to test nucleation theories [25,57,58,48,42,43,59]. How
ever, to the best of our knowledge, only three studies [42,43,59] have 
conducted a detailed comparison between the theoretically calculated 
nucleation parameters and those obtained through MD simulations 
using a LJ toy model. The lack of similar analysis for multicompo
nent crystalline compounds described by realistic interatomic po
tentials is the primary motivation for this study. Therefore, we 
focused on a theoretical and computational study of the melting phe
nomenon in an Aluminum-Copper alloy – a material of enormous 
technological significance in the aerospace and automobile industries 
[60,61,62], among others. Superheated AlCu is commonly utilized in the 
processing of high-temperature materials, namely, laser- and electron- 
beam welding to create robust and high-quality joints between diverse 
metal parts [63]. However, experimental studies on AlCu melting are 
relatively scarce [64,65,66,67,68] because of the challenges associated 
with achieving superheats, as previously mentioned. 

The theoretical analysis of nucleation also becomes more intricate 
when dealing with multicomponent systems [31,69,70]. In the case of 
multicomponent nucleation, a cluster is formed with a specific compo
sition that is dictated by the equilibrium conditions. Subsequently, the 
thermodynamic driving force Δg and the interfacial free energy γ are 
determined for this particular composition of the newly evolving phase. 
This study utilizes effective values of Δg and γ, as outlined in Ref. [31]. 

Turning to MD simulations, it is important to note that they crucially 
rely on the interatomic potential employed. Moreover, proper investi
gation of solid–liquid phase transformation using MD calculations can 
be problematic because of the structure-dependent parameterization of 
conventional potentials [71]. Fortunately, in this regard, machine 
learning (ML) approaches offer a revolutionary solution. Over the past 
decade, ML algorithms have become an important tool in calculus-based 
materials science and condensed matter physics because of their 
impressive ability to accelerate the discovery of materials and explain 
their behavior, among other applications [72,73,74,75,76,77,78,79]. 
Data-driven ML approaches have also been effectively used to construct 
complex interatomic potentials with first-principles accuracy at a 
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reasonable computational cost [80,81,82,83,84]. When applied to phase 
transition studies, these sophisticated ML models can provide valuable 
insights into experimental observations. For example, the experimental 
extreme supercooling of gallium was elucidated by an exceedingly large 
activation barrier for nucleation, uncovered through a crystallization 
study using a ML model [85]. 

Considering the aforementioned arguments, the two main objectives 
of this comprehensive study are: (i) to obtain crucial properties that 
describe liquid nucleation in superheated AlCu crystals, realistically 
simulated using both a traditional and a ML model, in a wide range of 
superheatings, and (ii) to test the validity of the CNT in predicting liquid 
nucleation rates in this important material. To accomplish this task, we 
developed a reliable AlCu force field using a neural network machine 
learning algorithm that was extensively trained on massive ab initio data 
of both AlCu crystal and liquid configurations. 

This paper is structured as follows: Section 2 presents the mean 
lifetime and the mean first-passage time methods, as well as the MD 
models under investigation; the computational and theoretical results 
and discussion on AlCu crystal melting are given in Section 3; our con
clusions are summarized in Section 4. 

2. MD models and computational methods used 

2.1. The MEAM and ML models 

We studied the homogeneous melting of AlCu crystals under 
isothermal-isobaric conditions at atmospheric pressure using two 
computational models. The interatomic interaction in the first model 
was described by the second nearest-neighbor modified embedded atom 
method, as reported in Ref. [86]. This potential was derived from the 
original semi-empirical MEAM [87,88] by extending the interaction 
range to include the second nearest-neighbors [89,90], which improved 
the model stability and enabled better prediction of crystal-liquid 
coexistence properties – an important factor for the first-order phase 
transition studied. 

We also implemented a neural network machine learning-based 
interatomic potential for a second model utilizing two strategies. The 
first involved training the potential only on liquid configurations 
without any prior knowledge of possible crystal structures, whereas the 
second involved training on both liquid and crystal configurations. 
These two ML potentials are referred to as ML-l and ML-sl, respectively. 
The development of these two ML potentials enables the study of the 
liquid–solid structural inheritance [91], contributing to a deeper un
derstanding of this cutting-edge class of interatomic potentials. 

We developed the AlCu ML interatomic potentials using the free and 
open-source DeePMD software [83], which employs feedforward deep 
neural networks to approximate the potential energy surface of many- 
particle systems. The training ab initio datasets were generated by an 
active learning strategy realized in the DP-GEN package [83]. The ab 
initio calculations were based on the Density Functional Theory (DFT) as 
implemented in the VASP code [92]. In the first stage, a few hundred ab 
initio trajectories were used to train an ensemble of four ML potentials, 
each with different initializations of neural network weights. Subse
quently, we conducted MD simulations with these ML models under 
varying temperatures, pressures, and concentrations. The MD configu
rations that showed a maximum deviation, δ, ranging from 5 to 15 % 
between the forces predicted by the ML models and those obtained 
through the DFT calculations were added to the training dataset. Af
terwards, we retrained the ML models on the extended dataset and ran 
new MD simulations while enforcing the δ criterion to control their 
accuracy. This active learning process was carried out iteratively until 
the criterion δ < 5 % was met for all MD configurations, resulting in the 
development of the ML potential with uniform accuracy under specific 
thermodynamic conditions. In this way, we performed ML-assisted MD 
simulations at temperatures ranging from 800 to 2000 K and at three 
isobars: − 10, 0.0, and 10 kbar. The Al, A75Cu25, Al50Cu50, Al25Cu75, and 

Cu liquid configurations were considered in the ML-l potential devel
opment. In the ML-sl potential creation, we also included the following 
crystalline configurations: Al (fcc), Al2Cu (θ-phase, I4/mcm), Al50Cu50 
(C12/m1), AlCu3 (β-phase, Pm3m), and Cu (fcc). The training dataset 
comprised approximately 10,000 DFT configurations, each containing 
512 atoms. More technical details on both the ab initio calculations and 
the ML procedure can be found in Ref. [93]. In Ref. [94], the ML po
tentials developed underwent comprehensive and thorough validation 
using experimental and ab initio data pertaining to structural, thermo
dynamic, and transport properties, as well as evaluating their compu
tational performance. Overall, the resulting ML potentials provided 
nearly ab initio accuracy and allowed us to achieve a computational cost 
at least three orders of magnitude (o.m.) smaller than that using DFT 
simulations. 

The AlCu crystals under the melting study were composed of N =

11664 atoms arranged in a cubic cell with periodic boundary conditions 
in three dimensions. The structure of the AlCu crystals was B2, charac
terized by the replacement of a Cu atom with an Al atom at the body- 
centered position. This structure was selected because of its most 
negative formation energy, as determined by the MEAM model at the 
liquidus temperature, TL = 1170 K[86], that is, the most thermody
namically stable lattice. 

The accurate prediction of the equilibrium temperature in ML 
models is a challenging task [75,77,95,96,97]. We determined the liq
uidus temperature of our AlCu ML models at atmospheric pressure using 
the crystal-liquid equilibrium coexistence method [98,99]. The corre
sponding two-phase MD simulations were performed with the B2- 
structured crystal oriented in the (100) direction relative to the 
liquid. By monitoring the alteration in the total potential energy and 
visualizing the atomic configurations over 2 ns simulations in the NpT 
ensemble, we discovered that the two-phase ML-l (ML-sl) system always 
crystallized at temperatures T⩽880 K (820 K) and melted at 
T⩾890 K (830 K). Thus, the liquidus temperatures for the ML-l and ML- 
sl models were estimated as TL = 885(4) K and TL = 825(4) K, respec
tively. Hereafter, the number in parenthesis indicates the uncertainty in 
the last significant digit. These values of TL are lower than the experi
mental one,T ≈ 1100 K, and fall within the temperature range of AlCu 
solid–solid transitions [100]. One can thus hypothesize that the decay of 
the ML crystals may be the first stage of their transformation into a more 
stable crystalline state through the formation of a supercooled liquid as 
an intermediate phase. Such a phenomenon was recently observed in 
experiments conducted on a rapidly heated Au70Cu5.5Ag7.5Si17 metallic 
system [101]. However, investigating this intriguing hypothesis is 
beyond the scope of this paper and requires further research. 

Having established the liquidus temperatures of the current models, 
a perfect B2-structured AlCu crystal sample was created at T = TL under 
1 bar. Next, after 10 ns of equilibration in NpT conditions, 50 stable 
configurations were collected for 5 ns for each studied model. The su
perheated (stretched) crystals were obtained by isobaric heating at a 
rate of ΔT/Δt = 1012 K/s. 

The MD simulations were performed by parallel calculations in the 
free and open-source LAMMPS software [102,103]. Following Ref. [44], 
the timestep in the simulations was set at 2 fs, which is shorter than the 
typical atomic vibrational period in solids. The relaxation times for the 
thermostat and the barostat were set to 0.2 and 2 ps, respectively. 

2.2. The mean lifetime (MLT) method 

The spontaneous formation of a liquid nucleus in a superheated 
crystal is a stochastic event described by the Poisson probability distri
bution [104]: 

P(m, τ) = (m!)
− 1
(λτ)mexp(− λτ) (6) 

where P(m, τ) is the probability of forming m supercritical nuclei by 
time τ, λ is the formation rate of supercritical nuclei,λ = JV, and V is the 
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box volume. 
In the high metastability region (large superheating), the formation 

of one viable nucleus is sufficient to initiate a phase transition. Taking 
m = 1 in Eq. (6), yields the probability of formation of one supercritical 
nucleus by time τ: 

P(1, τ) = λτexp( − λτ) (7) 

Consider N independent nucleation experiments. The number of 
nucleation events from τ to τ + Δτ, according to Eq. (7), is equal to 

k = N λΔτexp( − λτ) (8) 

Thus, analyzing the distribution of nucleation times from Eq. (8), one 
can obtain λ and, consequently, the nucleation rate, J = λV[28,105]. 

The average time of the first critical nucleus expectation or the mean 
lifetime of a metastable sample is given by: 

τ =

∫ ∞

0
λτexp(− λτ)dτ = λ− 1 = (JV)− 1 (9) 

Accurately measuring the appearance time of a supercritical liquid 
nucleus in real crystal melting experiments is very challenging, and is 
only possible in certain cases, such as in colloids [38]. Therefore, liquid 
nucleation events are usually recorded indirectly by a secondary feature, 
such as a change in the diffraction pattern or in electrical resistance due 
to the formation of a large amount of a new phase, as well as by various 
calorimetric or radiation techniques. As a result, these nucleation times 
include the expectation time for the first critical nucleus and the time for 
its growth to registrable size. The times associated with the growth of 
the nucleus and the establishment of a stationary process can be easily 
detected by Eq. (8), since the probability of a single event in the Poisson 
process is independent of the origin time. 

The MLT method was first used in experimental studies of sponta
neous boiling up of superheated liquids [28]. In computer simulations, 
this method has been successfully employed in studying cavitation in 
tensile-stressed liquids [106,107], spontaneous crystallization of 
supercooled liquids [105,108], and melting of a superheated crystals 
[42,45,48,57,59]. 

2.3. The mean first-passage time (MFPT) method 

Nucleation is a thermally activated process. In computer simulations, 
the kinetics of these processes can be analyzed using the mean first- 
passage time method [109,110]. “First-passage time” refers to the 
time taken by a state variable to reach a certain value. In nucleation 
simulations, the state variable or a reaction coordinate is usually the size 
of the largest nucleus of the new phase, nmax [110]. The mean time for 
the appearance of a nucleus of any given size,〈τ(n)〉,can be obtained 
from a set of nmax(τ). According to the MFPT formalism, the 〈τ(n)〉
dependence is given by: 

〈τ(n)〉 = τ
2
{

1 + erf
[
Z*

̅̅̅
π

√
(n − n*)

] }
(10) 

where erf(x) is the error function and n* is the number of atoms in the 
critical nucleus. 

Thus, by fitting the 〈τ(n)〉 data with Eq. (10), three important 
nucleation parameters can be obtained:n*,Z*, and τ. Moreover, the 
MFPT method also enables determination of the work of formation for 
the critical nucleus, W* [111]. Noteworthy, careful consideration should 
be given to the choice of the reaction coordinate and time resolution 
[112], as they greatly affect the accuracy of the MFPT results. The MFPT 
approach has been effectively applied in nucleation computational 
studies in condensation [110,113], crystallization [105,114,115], and 
melting [59]. 

3. Results and discussion 

3.1. Melting of superheated AlCu crystals in MD models 

Fig. 1 shows the temperature dependence of the crystal dS and liquid 
dL densities of AlCu in a specified region of interest. The experimental 
values were obtained by an accurate method of penetrating gamma ra
diation [116], based on the Beer-Lambert-Bouguer law of light beam 
attenuation by an absorbing substance. The MD data of dS(T) were ob
tained by heating a homogeneous crystal sample from room temperature 
up to complete melting, with a heating rate of ΔT/Δt = 5⋅1011 K/s. The 
melted sample was then cooled at the same rate to calculate dL(T). We 
found a good agreement between the experimental and computational 
density values, with differences of only ~ 15 % (~6 %) between the 
MEAM (ML) models and the experimental values. 

Since the liquidus temperatures were different for each MD model, 
we implemented a unified temperature scale,T/TL. In this way, the 
melting process was studied in a range of superheatings:T/TL =

1.11 − 1.30. Such superheatings can be achieved in modern experiments 
[17]; however, it is challenging to investigate experimentally the crystal 
decay at a microscopic level. On the other hand, computer simulations 
allow us to track the melting phenomenon at an atomic scale, providing 
insight into the underlying mechanisms of this process. 

Fig. 2 displays the typical time dependence of the density of a su
perheated AlCu crystal. A decrease in density due to crystal decay is 
observed, resulting from the nucleation and substantial growth of a 
liquid drop. The melting time was taken as the time when the total 
system density decreased by 1 % of its initial value. This time was the 
sum of three contributions: (i) expectation time for the first viable nu
cleus; (ii) growth time; (iii) time-lag associated with establishing both a 
stationary flow of nuclei [33] and the thermodynamic parameters after a 
transient process to the temperature under investigation. 

Fig. 3 shows the distributions of the melting times at T/TL = 1.1 and 
1.3, which are well fitted with a Poisson distribution, Eq. (8). Extracting 

Fig. 1. Temperature dependence of the crystal ds and liquid dl density of AlCu 
along 1 bar isobar: experimental data on ds(1) and dl (5) from Ref. [116]; 
current MD calculation of ML-l system, ds(2) and dl (6); ML-sl, ds(3) and dl (7); 
MEAM, ds(4) and dl (8). The corresponding liquidus temperatures, TL, are 
indicated by triangles. The experimental value of TL is shown by a vertical line. 
The five superheating states under study are specified by squares. The tem
perature range of the AlCu solid-solid transitions [100] is shown in yellow. 
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both the nucleus growth times and nucleation time-lags was possible 
because of the independence of the probability of an individual event 
onset from the beginning of the time reading [105]. The mean life
time,τ = 1/λ, was obtained as a fitting parameter, with an uncertainty of 

στ = τ⋅N − 0.5 ≈ 0.14⋅τ [28]. In the superheating range studied, the mean 
nucleation times changed by 2 o.m., τ = 3⋅10− 11 − 2⋅10− 9 s. 

Using the MD values of τ and V, the nucleation rate, J, was calculated 
by the MLT method from Eq. (9). In this way, J increases from J =

2.6(4)⋅1033 s - 1m - 3 at T/TL = 1.11 to J = 2.0(3)⋅1035 s - 1m - 3 at T/
TL = 1.30. These high nucleation rates observed are typical in brute- 
force MD simulations [40,99] and, notably, exceed those obtained 
experimentally at ~ 3 %-superheated Al–3.7wt.%Cu melting using 
scanning electron microscopy: 1013 to 1015 s− 1 m− 3 [67]. To simulate 
homogeneous melting in thermodynamic states with lower experimental 
nucleation rates (higher nucleation times), a significant improvement in 
computational resources is necessary, especially for systems described 
by complex ML potentials. Most likely, similarly to the crystallization 
computational studies at moderate supercooling, advanced sophisti
cated methods can be employed to accelerate the formation of liquid 
nuclei in crystals [40]. Entering a higher superheating region, the 
melting times become extremely short, τ < 1 ps or dozens of MD time
steps, resulting in melting the crystal as early as during the heating path 
to the target temperature. 

Another route to calculate the nucleation time is by tracking the size 
of evolving new-phase fragments and analyzing them by the MFPT 
formalism [110]. To employ this approach, a suitable reaction coordi
nate should be defined in a univocal manner. In crystallization studies, 
the order parameter, referred to the number of crystal-like atoms in a 
supercooled liquid, is often used as the reaction coordinate. In this study, 
we utilized a disorder parameter, which was determined via the amount 
of liquid-like atoms in the superheated crystal, i.e., atoms that belong to 
the liquid phase. To identify them, the atomic coordinates were stored 
every 10 picoseconds and the atomic displacements were analyzed [51]. 
The locations of large displacements during melting were different in the 
ML and MEAM crystals. In the ML case, we observed large atomic jumps 
only in a certain region, whereas in the MEAM case, larger jumps were 
localized not only in some regions, but also randomly throughout the 
volume. This behavior is attributed to the decrease in the diffusion 
activation barrier with temperature. However, further research is 
required to investigate the possible alterations in the melting mecha
nism [21,23]. 

The atoms that moved further than a threshold value for 10 ps were 
considered to be liquid-like or mobile [8,41,50]. The temperature- 
dependent threshold was selected to identify ≈ 95 % of the atoms in a 
system as mobile in the molten state at a given temperature. It varied 

from 1.5 to 1.9A
o
. Fast single atoms without mobile neighbors were 

excluded from the analysis. A group of n mobile atoms, located within a 
distance less than a lattice constant from each other, was considered as a 
liquid nucleus of size n (Inset in Fig. 2). In this way, we found that each 
melting event was always initiated by a single critical nucleus. Both the 
MEAM and ML models showed that the number of mobile atoms 
perfectly correlated with the increase in system enthalpy and the 
decrease in density resulting from solid decay (Fig. 2). Thus, this result 
supports the Lindemann criterion for melting onset, that is, a crystal 
starts to melt when the atomic oscillations in the lattice reach a critical 
value [20]. Furthermore, liquid formation always occurred in regions of 
the mobile atoms (precursors to melting); therefore, liquid nucleation 
can be considered a two step process: superheated crystal – domain of 
mobile atoms – liquid nucleus. This finding agrees with experimental 
evidence of melting of a colloidal crystal composed of N-iso
propylacrylamide microgel spheres, where a liquid drop nucleated in a 
zone of fast-moving particles [36]. 

After developing the procedure for determining the liquid nucleus 
size, 50 n(t) dependencies were collected during crystal melting at each 
temperature. The time of first appearance of a liquid cluster of a certain 
size, τ(n), was determined for every computational experiment. The 
averaged 〈τ(n)〉 curve demonstrates a typical S-shape at moderate 
superheatings (Fig. 3), as predicted by the MFPT approach [110]. 
However, at high superheatings, a deviation from the theoretical shape 

Fig. 2. Time dependence of the density of a melting AlCu MEAM crystal and 
the number of liquid-like atoms, normalized by the total number of atoms, T =

1.15⋅TL. The horizontal line shows a 1 % density drop, which determines the 
melting time in the MLT method. The time interval of the melting process, 0.1 
ns, is shown in yellow. Inset: 2D projection of the system configuration at the 
melting onset; only liquid-like atoms are shown. 

Fig. 3. Mean first-passage times vs. liquid nucleus size for five superheatings: 
T/TL = 1.11, 1.15, 1.20, 1.27 and 1.30. The horizontal arrow denotes the di
rection of superheat increase. The critical nucleus size corresponds to τ/τ =

0.5, Eq. (10), and is highlighted in yellow. The atomic transport coefficient, 
D *, was calculated within the range of τ/τ = 0.4 − 0.6. Inset: Histograms of the 
AlCu melting time distribution for the lowest and highest superheatings stud
ied. The smooth curves are the Poisson distribution, Eq. (8). 
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was observed, which was earlier reported in a MFPT study on crystal 
nucleation of a deeply supercooled LJ liquid [115]. The MFPT nucle
ation times, τ, and, consequently, the nucleation rates are agree well 
with those determined by the MLT method (Table 1). The coincidence of 
τ and J, determined by the MLT and MFPT methods, was established 
earlier in crystal nucleation analysis [105]. Along with τ, the critical 
size, n*, and the Zeldovich factor, Z*, were obtained by fitting the 〈τ(n)〉
dependence with Eq. (10). Both n* = 50 − 120 and Z* = 0.01 − 0.02 
showed adequate values (Fig. 4). The higher the superheating, the 
smaller the critical nucleus size found, which agrees with the CNT. 
Assuming that the number density of the liquid nuclei, ρ*, is equal to that 
of the bulk liquid at a given temperature, the radii of the critical nuclei 
were determined as R* = (3n*/4πρ*)

1/3, and were R* = (0.7 − 0.8) nm. 

3.2. Comparison of theoretically and directly determined nucleation rates 

First, using the critical size, n*, and the Zeldovich factor, Z*, obtained 
by the MFPT method, the work of nucleus formation was calculated from 
Eq. (4) as W* = 3πn2

*Z2
*kBT. In this way, the height of the activation 

barrier, W*/kBT, ranges from 10 to 12. These values are comparable to 
those found in typical brute-force nucleation MD studies in superheated 
and supercooled liquids, and in supersaturated vapor, where W*/kBT 
normally does not exceed 20–25 [107,117,118]. Our nucleation barrier 
values align with the CNT analysis of experimental melting, where W*/

kBT = 30 has been found [30,35]. 
The work,W*, was calculated using the simulation data by Eq. (4), 

instead of Eq. (1), to avoid the unknown values of the interfacial free 
energy, γ. The use of approximations for γ(T) may lead to significant 
overestimations of W*. For example, the interfacial free energy was 
considered to be equal to that at a flat crystal/liquid interface, γ(T) =

γ∞, for homogeneous melting of a LJ crystal [59], which leads to a huge 
theoretical nucleation barrier, W*/kBT ≈ 50 − 200. As a result, the CNT 
nucleation rates were 16–70 o.m. lower than those directly calculated by 
MD. However, these high activation barriers obtained cannot be over
come in brute-force MD simulations, even for a fast-computed LJ model, 
where the barrier W* = 50⋅kBT corresponds to a nucleation rate J ≈

1018 s - 1m - 3 [119]. To reach this rate by direct simulation, even in a 
one-billion-atom system, the average waiting time for the first viable 
nucleus would be ~ 10 s, while typical MD times do not exceed 1 μs. 

The driving force was calculated from Eq. (4) as |Δg + e| =
6πn*Z2

*kBT. The interfacial free energy, γ, was then determined from Eq. 
(2) as γ = |Δg + e|ρ∗R*/2. As anticipated, the value of |Δg + e|/kBT in
creases with superheating, rising from 0.20 at T/TL = 1.11 to 0.39 at T/
TL = 1.30. In contrast, γ remains nearly constant, with a value of 0.10(1) 
J/m2, agreeing well with the experimental estimations available, γ =

0.12(2) J/m2 [68] and 0.09–0.16 J/m2 [120]. 
Finally, the effective atomic transport coefficient, D *, was obtained 

as the attachment coefficient for nuclei growth rates from the MFPT 
curves, D * = dn(t)/dt, in the vicinity of the critical size, n = n*. In this 

way, D * takes values in the range from 1011 to 3⋅1012 s - 1, and follows 
the Arrhenius law, as shown in Fig. 4. 

Using the MD values of the transport coefficient, D *(T), and the 
number of atoms in the critical nucleus, n*(T), the activation energy, E*, 
was estimated from Eq. (5). Because of the small nuclei size, whose radii 
do not exceed 1 nm, the number of surface atoms in Eq. (5) is assumed to 
be equal to half the total number of atoms in the critical nucleus at any 
given temperature, i.e., i*(T) = n*(T)/2 [119,121]. In this way, E* de
creases with temperature, as expected, ranging from 5 to 10 kBT. 
Consequently, the kinetic barrier was found to be lower than the 

Table 1 
Melting parameters of AlCu crystals for p = 1 bar at five superheatings, T/TL.  

Quantity Superheating,T/TL 

1.11 1.15 1.20 1.27 1.30 

Model MEAM MEAM MEAM ML-sl ML-l 
T, K 1300 1350 1400 1050 1150 
ds, g/cm3 4.65 4.63 4.61 5.09 5.11 

dl , g/cm3 4.53 4.50 4.48 4.83 4.79 
τ, s, MLT 2.1⋅10− 9 6.6⋅10− 10 1.7⋅10− 10 6.8⋅10− 11 2.9⋅10− 11 

τ, s, MFPT 1.7⋅10− 9 6.0⋅10− 10 1.4⋅10− 10 9.4⋅10− 11 6.1⋅10− 11 

J, s - 1m - 3, MLT 2.6⋅1033 7.9⋅1033 3.2⋅1034 8.5⋅1034 2.0⋅1035 

J, s - 1m - 3, 
MFPT 

3.1⋅1033 8.8⋅1033 3.7⋅1034 6.2⋅1034 9.6⋅1034 

J, s - 1m - 3, CNT, 
Eq. (11) 

4.2⋅1032 2.6⋅1033 1.0⋅1034 7.5⋅1034 1.6⋅1035  

Fig. 4. Mean nucleation time, τ, determined by the MLT and MFPT methods, 
atomic transport coefficient, D *, number of atoms in the critical nucleus, n*, 
and Zeldovich factor, Z*, vs. superheating, T/TL. The region studied by ML 
crystals is highlighted in yellow. 

Fig. 5. Temperature dependence of the nucleation rate, J at p = 1 bar. The 
methods used are specified in the legend. The size of the symbols in MLT and 
MFPT J corresponds to the determination error. The CNT calculation of J was 
made by Eq. (11). The smooth curve represents the lnJ ∼ 1/T2 approximation 
of the CNT data. The region studied by ML crystals is highlighted in yellow. 
Inset: Nucleation and activation barriers: W*/kBT, Eq. (4), and E*/kBT, Eq. (5), 
vs. superheating. Straight lines are approximations of the calculated values. 
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thermodynamic one,E*(T) < W*(T), for all superheatings up to T = 1.3⋅ 
TL (inset in Fig. 5). Such inequality has been previously obtained in 
similar CNT analyses of LJ and Ge crystallization [99,119,122]. 

Summarizing, the values of W*, E*, n*, Z*, and D * calculated by the 
MEAM and two ML models, are shown in Table 2 for all temperatures 
under investigation. It can be seen that these nucleation parameters in 
MEAM and ML crystals are consistent. It proves that the constructed ML 
models are able to correctly reproduce the complex process of crystal 
decay at the atomic scale. 

Inserting Eq. (2) into Eq. (1), one can write. 

J = ρD *Z*exp
(
− 3πn2

*Z2
*
)

(11) 

Expression (11) was utilized here to calculate the nucleation rate 
theoretically, based on physical properties determined from the MD 
simulations: ρ,D *,Z*, and n*. As a result, the theoretical J falls in the 
range of 4⋅1032 − 2⋅1035 s - 1m - 3 for the superheatings under investi
gation, T/TL = 1.1 − 1.3 (Table 1). It should be stressed that these values 
of J were calculated without any fitting parameter, using only MD- 
generated data. Fig. 5 summarizes the nucleation rates computed by 
the MLT and MFPT methods and theoretically calculated by the CNT for 
the MEAM and ML models. Excellent agreement of the CNT and MD 
nucleation rates for both MEAM and ML crystals is found. The cur
rent findings support and reinforce previous computational studies of 
the spontaneous, homogeneous melting in a simple LJ crystal 
[42,43,59]. 

For the ML crystals, the prefactor ρD *Z* in Eq. (3), determined as the 
y-axis intercept of the lnJ(1/T) plot, has the same order of magnitude as 
the theoretical values resulting from the MD simulations, 
ρD *Z* ≈ 1039 s - 1m - 3. A similar analysis of the MEAM crystals data 
reveals a huge discrepancy of 10 o.m. in ρD *Z* values, which is often 
observed in crystallization studies [99,119]. According to Eq. (3), the 
slope of the lnJ(1/T) plot determines the height of the nucleation bar
rier, W*. In this way, W* for the MEAM crystals take implausible values 
of 33–35 kBT, which significantly exceed those calculated from Eq. (4), 
W∗ = 3πn2

∗Z2
∗kBT ≈ 11 kBT. In contrast, W* in the ML models obtained 

from the lnJ(1/T) plot and from Eq. (4) are identical within the deter
mination error of 1⋅kBT (Table 2). 

Thus, MD melting in ML crystals is unprecedentedly and accurately 
described by the CNT not only in the final outcome (the nucleation rate), 
but also in terms of the underlying details (kinetic prefactor, formation 
energy and size of critical nucleus). 

It should be noted that only spherical critical liquid nuclei were 
theoretically considered here, even though their formation may not al
ways be energetically favorable even in isotropic crystals [42,123]. 
However, it has been shown [124] that the formation of lentil-shaped 
nuclei is only favorable at low superheatings, indicating that the theo
retical assumption of spherical nuclei is reasonable for the present 
estimation at moderate and high superheatings. 

In summary, this is the first theoretical and computational study on 
the spontaneous melting of AlCu crystals described by the MEAM and 
ML realistic interatomic potentials. Moreover, for the first time, the CNT 
formalism, utilized with no adjustable parameters, successfully 
described the melting of a crystal model created through artificial neural 
network machine learning-processed quantum calculations, that is, the 
computational model did not rely on hand-crafted interatomic potential 
functions. 

The application of the developed AlCu ML model is not restricted to 
the scope of this study. It can be utilized to comprehensively explore the 
complex AlCu phase diagram [125] and investigate potential structural 
transformations, such as solid–solid transitions via melting [101]. 
Overall, in the near future, properly designed and trained ML models are 
expected to essentially enhance our understanding of the fundamental 
nature of crystal decay at the nanoscale and provide a means to test and 
develop theoretical models of order–disorder transitions. 

4. Conclusion 

The present results for spontaneous melting of an AlCu alloy reveal a 
very good agreement between theoretical nucleation rates calculated by 
the CNT and values obtained through computer simulations. Further
more, the CNT correctly described the underlying details of liquid drop 
nucleation in the ML solid, accurately reproducing the kinetic prefactor 
and the size, formation energy, and growth velocity of the critical nuclei. 
Thus, the melting of the AlCu model created through machine learning- 
processed quantum calculations, that is, not relying on hand-crafted 
interatomic potential functions, was successfully described by the CNT 
formalism, without any adjustable parameters. 

This research provides a strong validation for the CNT as an effective 
descriptor of homogeneous nucleation in this superheated material and 
generalizes the validity of this theory as a powerful tool for analyzing 
and predicting the kinetics and thermodynamics of first-order phase 
transitions. 
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