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A B S T R A C T   

Glass hardness varies in a non-linear fashion with the chemical composition and applied load, a phenomenon 
known as the indentation size effect (ISE), which is challenging to predict quantitatively. Here, using a curated 
dataset of over 3,000 inorganic glasses from the literature comprising the composition, indentation load, and 
hardness, we develop machine learning (ML) models to predict the composition and load dependence of Vickers 
hardness. Interestingly, when tested on new glass compositions unseen during the training, the standard data- 
driven ML model failed to capture the ISE. To address this gap, we combined an empirical expression (Bern-
hardt’s equation) to describe the ISE with ML to develop a framework that incorporates the symbolic equation 
representing the domain reasoning in ML, namely Symbolic Reasoning-Informed ML Procedure (SRIMP). We show 
that the resulting SRIMP outperforms the data-driven ML model in predicting the ISE. Finally, we interpret the 
SRIMP model to understand the contribution of the glass network formers and modifiers toward composition and 
load-dependent (ISE) and load-independent hardness. The deconvolution of the hardness into load-dependent 
and load-independent terms paves the way toward a holistic understanding of the composition effect and ISE 
in glasses, enabling efficient and accelerated discovery of new glass compositions with targeted hardness.   

1. Introduction 

Glasses are widely used in several applications involving interactions 
with other entities, namely, automobile windshields and other specialty 
windows, artificial gems, ballistic armors, smartphone and computer 
protective screens, biomedical implants, nuclear waste immobilization 
matrices, and artistic pieces [1,2]. The glass hardness is correlated with 
its ability to resist damage in such applications [3], which is typically 
determined by instrumented indentation experiments [4–7]. However, 
the hardness values obtained from such experiments are not an intrinsic 
glass property; it also depends on other parameters, such as the loading 
procedure, geometry of the indenter, and environmental conditions [8, 

9]. Specifically, hardness monotonically decreases and saturates with 
increasing applied load—a phenomenon termed indentation size effect 
(ISE) [10–13]. This load-dependent plastic behavior of glass has been 
attributed to the stress concentration generated due to sharp contact 
loading, which causes localized structural changes in the glass network 
leading to permanent deformation [14]. The ISE prevents the compari-
son of hardness values obtained at different loading conditions. Pre-
dicting load-independent hardness values is thus crucial for comparing 
experiments conducted at varying loads. 

Experimental studies have paved the way for several empirical laws 
capturing the load-dependence of glass hardness [10,15–18]. A widely 
used empirical law for predicting the ISE was provided by Bernhardt 
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[19]. Such relations are based on experimental observations fitted to 
simple polynomial-like functions. Thus, these laws are based on human 
observation/intervention, which is hard-coded in symbolic expressions 
by testing on a large family of glasses, an approach known as symbolic 
reasoning [20]. Symbolic reasoning has found extensive success in 
materials science, where several observations have been coded as 
empirical rules, enabling the prediction of material properties. However, 
these empirical laws require the fitting parameters to be calibrated for 
each family of glasses and typically are not transferable from one family 
to another. These laws are useful but require multiple experiments for 
each glass family to obtain the fitting parameters. 

Recently, researchers have been successful in predicting glass prop-
erties using machine learning (ML) techniques [21–29]. For instance, 
Ravinder et al. [21] developed neural network models for predicting the 
physical, mechanical, optical, and thermal properties of oxide glasses. 
Since these models were trained on a limited number of components 
(~30 components) and properties (eight properties), there was a need 
for models which could predict properties for a broader range of com-
ponents encompassing oxides, halides, and sulfides, to name a few [30]. 
To overcome this limitation, researchers [22] developed tree-based 
machine learning models for predicting 25 properties of oxide glasses 
for a larger dataset. In another work [23], researchers predicted the 
hardness of oxide glasses as a function of their composition, testing load, 
and annealing temperature, which demonstrated improved property 
prediction and strengthened the fact that the glass hardness is a function 
of composition, testing, and processing parameters [23]. However, these 
models are purely data-driven and unable to incorporate any empirical 
or physics-based knowledge that severely limits the generalizability of 
the model to compositions outside the training space. 

Moreover, interpreting the compositional dependence of properties 
is also required for designing novel glasses with targeted properties, a 
challenging task for black-box ML models. To this end, Alcobaça et al. 
(2020) [24] used explainable machine learning models to predict the 
glass transition temperature of oxide glasses. This work was followed by 
others on predicting and explaining the properties of glasses using large 
databases, employing explainable ML models and a game theory-based 
approach known as Shapely additive explanations (SHAP) [22,31,32]. 
Similar attempts have been made to predict the properties of chalco-
genide glasses along with their explanation of compositional effect using 
SHAP analysis [29,33]. 

Some recent studies have attempted to predict the Vickers hardness 
of oxide glasses using either composition only or composition and 
testing conditions, such as applied load [34,35]. However, these models 
use a classical data-driven model to predict the hardness that does not 
incorporate domain knowledge to ensure better generalization. Hence, 
these models cannot capture the load dependency or ISE, as demon-
strated later in the present work. ML has also been used to predict other 
mechanical properties based on instrumented indentation [36]. An 
alternate approach incorporating domain knowledge is called 
Physics-Informed ML [37], where known physical laws governing the 
system are included as part of the loss function. Such methods have 
succeeded in predicting glass properties, such as viscosity, which ex-
hibits a temperature-dependent variation based on the MYEGA or VFT 
equations [38]. Physics-informed ML has also been used to predict glass 
structure, where the physical information is provided by an independent 
statistical model [39]. Researchers have attempted to use data-driven 
knowledge and active machine learning approaches to model 
three-dimensional fracture problems from two-dimensional data [40, 
41]. However, to the best of our knowledge, there have been no efforts to 
incorporate domain knowledge based on intuition and observation into 
ML, especially in the field of glass mechanics research. That is, no pre-
vious works combine symbolic reasoning and ML to improve the pre-
diction and understanding of the mechanical properties of glasses. Also, 
no work has used a manually curated composition–load–hardness 
dataset for training an ML model. 

Here, we propose a symbolic reasoning-informed ML procedure 

(SRIMP) framework, combining Bernhardt’s law and ML, to understand 
the composition and load dependence of glass hardness. The contribu-
tion of this work is twofold: (i) we present the first highly curated dataset 
on composition–load–hardness values of glasses, which is made avail-
able publicly, and (ii) we develop a SRIMP framework that allows the 
definition of a load-independent hardness, while also providing insights 
into the indentation size effect for a given glass composition. To this end, 
we manually collected a large dataset (~3000 entries) of composition, 
load, and corresponding hardness values for different inorganic glasses 
from the literature, which was used to train traditional data-driven ML 
models. We demonstrate that even the ML models trained with the load 
as an input feature fail to capture the ISE. In contrast, the SRIMP model 
predicts the hardness in an improved fashion and exhibits an excellent 
capability to predict the load-dependent hardness variation. Further, we 
consider indentation experiments on three different glass compositions 
[42] to evaluate the transferability of the approach to new experiments 
performed in-house, on which the model has no information. Finally, the 
SRIMP provides interpretability to the ML model, thereby allowing the 
definition of a load-independent hardness. The Bernhardt equation im-
plies that the hardness is inversely proportional to the applied load and 
converges to an asymptotic value at large loads. Thus, at any given load, 
hardness can be decomposed as the sum of its asymptotic value (H∞) and 
the additional hardness value that varies as a function of load (aISE/LD) 
(Fig.7). That is, H=H∞+ aISE/LD (Eq. (5)). Thus, the load-independent 
hardness refers to the asymptotic value (shown in blue color in 
Fig. 7). Note that this asymptotic value might still depend on external 
factors such as humidity, surface quality, and even the indenter geom-
etry. We demonstrate that the load-independent hardness corresponds 
to the asymptotic hardness at high loads and allows the hardness pre-
diction at any load without performing an experiment. Possibly a 
modified Bernhardt equation could be developed using a symbolic 
regression framework in future research. However, additional work 
would be required to meaningfully interpret the modified equation in 
the context of indentation hardness. 

2. Methodology 

2.1. Dataset collection and preparation 

The datasets used in this work were manually collected from pub-
lished literature on glass, that is, research papers focusing on Vickers’ 
indentation experiments in oxide glasses. Special care was taken to 
ensure that there was no bias in the manual selection process. Manu-
scripts were chosen based on an extensive search of the Web of Science 
and Scopus databases. Further, all the papers on oxide glasses obtained 
based on the search were used to extract data composition, load, and 
hardness. Those data were cross-checked against two glass data-
bases–Interglad and SciGlass. The resulting dataset was normalized to 
ensure that the compositions added up to 100%. All the glass compo-
sitions were represented in the elemental form, with the value of each 
chemical taken in atomic mole percentage. Also, the hardness values 
were rounded off up to three decimal places. Duplicate entries were 
removed. Further, when multiple hardness values were available for a 
given composition, outliers were identified as those values lying beyond 
± 2.5% of the mean of all hardness values for that particular composi-
tion. These outliers were removed, and the mean value of the remaining 
was considered as the hardness of that composition. Additionally, we 
considered only those elements present in at least 30 or more glass 
compositions to ensure representative data in both training and test 
datasets. The above protocol resulted in hardness data for 3325 unique 
glasses with 52 features (51 different elements and load as the input 
features) for model training, testing, and further analysis. These data 
were used for developing the ML models using load and composition as 
the input. 

However, for many of the selected compositions, the hardness values 
were available for only a single load value. However, hardness values 
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corresponding to at least three different loads are required to fit the 
parametric equation of ISE for any given glass composition. To this end, 
we further curated a smaller dataset of about approximately 150 glasses 
[15,41–45,45–47] from the entire dataset, for which the hardness values 
corresponding to three or more load values were available. These other 
data were used to train the SRIMP model. 

2.2. Symbolic-reasoning informed machine learning procedure (SRIMP) 

The hardness, H, from indentation experiments was computed as 

H =
2Psin(θ/2 )

L2
D

(1)  

where, LD is the diagonal length of the indent after the indenter is 
removed, θ is the tip angle of the indenter, and P is the applied load. The 
ISE using Bernhardt’s model [48] is 

P
LD

= a1 + a2LD (2)  

where a1 and a2 are fitting parameters. Substituting for LD from Eq. (1) 
in Eq. (2), we get 

P = a1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2Psin(θ/2)

H

√

+ a2
2Psin(θ/2)

H
(3) 

Solving this quadratic equation for hardness H, we get (see Supple-
mentary materials for the detailed derivation) 

H =
C1

2P
+ C2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
1 + 4C1C2P

√

2P
(4)  

where C1 = 2a2
1sin(θ /2), and C2 = 2a2sin(θ /2). 

Similarly, substituting for load P in Eq. (1) from Eq. (2), we get 

H = 2a2sin(θ / 2) +
2a1sin(θ/2)

LD
= H∞ +

aISE

LD
(5)  

where the parameters H∞= 2a2sin(θ /2) and aISE= 2a1sin(θ /2) corre-
spond to the load-independent hardness and the extent of the ISE, 
respectively. Although Eqs. (4) and (5) are equivalent, one is obtained 
by eliminating LD, and the other is obtained by eliminating P. Thus, Eq. 
(5) requires LD, a quantity that can only be determined experimentally, 
while Eq. (4) allows the prediction of H purely based on load. 

Fig. 1 shows a graphical representation of the methodology 
employed in SRIMP. We train the ML model to predict the C1 and C2 

values associated with each glass composition by minimizing the loss 
function, 

Loss =
1
n
∑n

i=1

(
Hi

SRIML − Hi
actual

)2 (6)  

where Hi
actual represents the measured hardness of a certain glass at a 

given load and Hi
SRIML represents the predicted hardness using Eq. (4) for 

a total of n data points. The loss is then backpropagated through the 
multilayer perceptron (MLP) to learn the optimal weights that minimize 
it. In this process, the ML model learns the function relating to the 
composition and the parameters C1 and C2. Further, by comparing Eqs. 
(4) and (5), the relationship between C1 and C2 with aISE and H∞,

respectively, can be obtained as C2 = H∞ and C1 = α2
ISE/(2sin(θ /2)). 

This approach directly allows interpreting any glass composition’s ISE 
and their inherent hardness. 

2.3. Model training 

To train the ML models, the cleaned datasets (both larger and 
smaller) were divided into 80:20 proportions for the training and testing 
sets, respectively. Fig. 1 shows the schematic of the training scheme with 
load (P) as an input. All the features were taken as input parameters, and 
the hardness was the output parameter for the ML model training. The 
mean and standard deviation of the training set features were used to 
scale the data before training by computing the z-score. [49] The 
training set was subjected to 10-fold cross-validation to enable hyper-
parameter search for an optimal fit. Since machine learning models have 
different hyperparameters, they need to be chosen appropriately to 
achieve generalized model performance. In the case of NN, these 
hyperparameters are the number of hidden layers, number of neurons in 
each hidden layer, learning rate, weight decay, dropout probability, 
activation function, and optimizer. The hyperparameters of the ML 
models were optimized using the Bayesian optimization-based library, 
Optuna [48], employing a previously reported approach [22]. The 
model with the best R2 score on the validation fold was chosen as the 
final model. Since the test data were kept hidden in the training step to 
avoid data leakage [50], they were used only to evaluate the perfor-
mance of the best model. The details of the bounds of each hyper-
parameter are provided in the supplementary material (Tables S1 and 
S2). MSE was chosen as the loss function for hyper-parameter optimi-
zation (see Eq. (6)). R2 scores are also reported as it is more straight-
forward to interpret (closer to 1 means better training) than the MSE or 
RMSE values. The MAE and RMSE metrics along with the R2 score are 

Fig. 1. Workflow diagram for the SRIMP model.  
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provided in supplementary materials (Table S3). 
The following python packages are used in this work: PyTorch, an 

open-source ML library [51], was used for developing a feed-forward 
neural network (NN). Batch normalization and dropout were used in 
the hidden layers to help in reducing the model overfitting to the data. 
NumPy, Pandas, and Matplotlib [52–54] were used for pre-processing 
and data visualization. Although we employed both tree-based and 
neural ML models, we obtained the best performance using an NN in 
terms of mean squared error and R2 for both validation and training 
scores. The final hyperparameters used in the ML models are reproduced 
in Table 1. All the codes and data used for the present work are available 
at https://github.com/M3RG-IITD/SRIMP_Hardness 

2.4. Shapley additive explanations 

To understand the model’s output, we used the SHAP [55], an 
interpretable machine learning algorithm, to understand the influence 
of individual features on the output. It is a unified game theoretic 
approach where players and the game can be considered as the feature 
values of instances and the model output, respectively. Shapely values 
tell us how fairly the prediction is distributed among the features. 
Mathematically, Shapley values are calculated as [22] 

ϕi =
∑

S⊆F {i}

|S|!(|F| − |S| − 1)!|F|!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fs(xs)

]
(7)  

where F denotes the set of all features, S denotes a subset of features, 
fS∪{i} denotes a model trained with the feature present, fs{i} denotes a 
model trained with the feature withheld, and xs denotes input features in 
subset S. By comparing the prediction of these models on the current 
input, SHAP determines the significance of a feature. The feature 
importance is high if the prediction error is high; otherwise, it is low. 
Note that SHAP has several advantages compared to simply considering 
the derivatives of the output with respect to the input. For instance, (i) 
SHAP is a model agnostic approach that can be used for models that are 
non-differentiable, for instance, Classification and Regression Trees 
(CART), XGBoost, or Random Forest. (ii) For many properties, the 
output might depend on a combination of input variables and their 
cross-interaction. This is especially true in the case of glasses where one 
component can have a significant effect on the behavior of other com-
ponents. In such cases, SHAP allows to capture this dependence through 
SHAP interaction value plots and SHAP dependency plots. SHAP has 
introduced various model approximations such as kernel, Deep, Linear, 
and Tree-based explainers. Based on the task and the model, any 
explainer can be opted to calculate the SHAP values for each feature. The 
explainer exploits the model’s internal complexity and collapses it to a 
low-order polynomial complexity [22]. 

Various plot types, such as bar, violin, river flow, and bee swarm 
plots, can be used to visualize the SHAP values. In this study, we use bar 
and violin plots to evaluate the ML model. Bar plots give the average 
impact of each feature on the model output without showing the 
directionality of effects, whether it is influencing positively or 

negatively. However, the violin plots represent the contribution of each 
feature towards the different model outputs as a function of the feature 
value. Thus, it is colored based on the feature value and represents the 
magnitude of impact on model output, whether it is impacting positively 
or negatively. 

3. Results and discussion 

3.1. Dataset visualization 

First, we analyze the hardness and load data compiled from the 
literature. Fig. 2(a) shows the bar chart of glass compositions associated 
with each feature of the training and test sets. The training and test sets 
have 2656 and 665 glasses, respectively, of which 2555 and 632 are 
oxide glasses, and the others are oxynitrides, oxy-halides, or chalco-
genide glasses. The inset of Fig. 2(a) shows the components present in a 
relatively small number of compositions. Fig. 2(b) shows the distribu-
tion of the number of chemical elements present in each glass compo-
sition in the training and test sets, that is, how many compositions 
present are two-, three-, four-component, etc. The most frequent value is 
for glasses having five elements, followed by six and four. The compo-
sitions with the most components in the dataset contain five elements. 
Fig. 2(c) shows the frequency of glass compositions in different hardness 
ranges. The glasses having hardness < 2 GPa are mostly phosphosili-
cates, and chalcogenides, while the most frequent hardness values are 
within 5–6 GPa. The glasses with high hardness are mostly oxynitrides 
with hardness values of 11–12 GPa. Thus, the dataset presented here 
covers a broad range of composition and hardness values for inorganic, 
non-metallic glasses. 

3.2. Machine learning models 

Figs. 3(a) and 3(b) show predicted hardness values with and without 
load as input features, respectively, compared to the experimentally 
measured values. These models will henceforth be referred to as ML 
hardness with load (MLHL) and ML hardness without load (MLH). We 
observe that the MLHL model, which takes both composition and load as 
input features, performs better than the MLH model, which takes only 
the composition as an input feature (training and test R2 scores of 0.922 
and 0.897, respectively, against 0.882 and 0.879, respectively). These 
results exemplify the importance of the applied load for hardness mea-
surements and predictions. The insets represent the error distribution as 
a probability density function. The narrow region of the red-colored 
shaded portion indicates the 95% confidence limit, confirming a small 
error for most of the values. Altogether, we observe that the model with 
the load as an input feature exhibits reliable hardness predictions. It 
should be noted that although the model predictions are relatively good, 
it is unclear if it can capture the load dependence on the hardness, which 
will be discussed in detail later. 

3.3. Symbolic reasoning informed ml 

Now, we evaluate the performance of the induced SRIMP model to 
predict the hardness values. For the model to be trained effectively, we 
need at least three data points corresponding to each glass (composition, 
three load values, and hardness) since there are two fitting parameters, 
namely C1 and C2. To demonstrate this effect, we trained the SRIMP 
model with one load, two load and three load values. Our findings reveal 
that as the number of load values increases, the curve gets closer to 
actual data (see Supplementary materials Fig. S3). Thus, considering the 
trade-off between accuracy and available data points, we considered 
compositions for which hardness is available for at least three different 
loads. Thus, the dataset employed to train the SRIMP model is signifi-
cantly smaller, with ~150 glass compositions (see Supplementary ma-
terials Fig. S1 for details). Fig. 4 shows the predicted hardness values 
using the SRIMP approach compared to the measured values. The model 

Table 1 
Details of model hyperparameters.  

Hyperparameter Model with Load Model without Load 

Epoch 500 500 
Batch Size 64 32 
Number of layers 1 1 
Neurons 92 97 
Dropout 0.2 0.1 
Activation LeakyReLU LeakyReLU 
Optimizer Adam Adam 
Learning rate 0.000832 0.000494 
Weight Decay 0.000322 0.000416  
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performance, as given by the R2 values (training and test values of 0.979 
and 0.948, respectively), is excellent in predicting glass hardness. To 
show the convergence of the training procedure, the loss curve for both 
training and test sets is provided in supplementary materials Fig S2. 

3.4. Indentation size effect 

To evaluate the ability of the models to generalize to unseen glass 
compositions and loads, we consider recent indentation experiments 
done on three new glass compositions synthesized in-house, that is, 
25Na2O–37.5B2O3–37.5SiO2 (NBS), 25Na2O–75B2O3 (NB), and 
25Na2O–75SiO2 (NS), compositions given in mol%. The hardness of 
these compositions was evaluated at multiple loads experimentally [42]. 
To quantify how different the new compositions are from the composi-
tions in the training set, we use the Manhattan distance as a metric (see 

Supplementary materials). Fig. 5 shows the minimum Manhattan dis-
tance for glass compositions used in the training and test set with their 
closest neighbor in the training dataset. We have also computed the 
minimum Manhattan distance for three selected glasses prepared and 
tested in-house: 25Na2O–37.5B2O3–37.5SiO2 (NBS), 25Na2O–75B2O3 
(NB), and 25Na2O–75SiO2 (NS), respectively (Fig. 5). It is worth noting 
that no glass composition belonging to the NBS family exists in the 
training set. Most important is that Fig. 5 shows that the NBS compo-
sition is far away from all those used for model training, hence it pro-
vides a fair test for the extrapolation ability of the SRIMP. 

To evaluate the ability of the ML models to capture the ISE, the 
hardness of these compositions was predicted using MLHL and SRIMP 
models. Note that the MLH model was not used as it cannot capture the 
load dependency. Figs. 6(a-c) show the hardness predicted by MLHL and 
SRIMP models, respectively. We observe that the data-driven MLHL 

Fig. 2. Visualizing the hardness dataset with load: (a) Number of elements and their frequency, (b) Frequency of glasses versus number of elements in their 
composition, (c) Distribution of hardness values in the datasets used for training and testing. 
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model cannot capture the load-dependent hardness variation of the glass 
compositions. Even the trend of the hardness predicted by the MLHL 
model is not representative of the ISE in glasses. Thus, MLHL performs 
poorly in extrapolating beyond trained compositions and loads and does 
not capture the ISE. 

In contrast, the SRIMP model not only correctly predicts the ISE 
trend of hardness but also provides values reasonably close to the 
experimentally obtained ones that the model has no knowledge of. Thus, 
the SRIMP model captures the ISE, qualitatively and quantitatively, for 
completely unseen compositions and loads. 

3.5. Load-independent hardness and indentation size effect 

To interpret the formulation of the SRIMP, we now evaluate the load- 
dependent (aISE/LD) and load-independent (H∞) components of the 

hardness (see Eqs. (4) and (5)). Fig. 7(a-c) shows the actual versus 
predicted hardness for the NBS, NB, and NS compositions, where the 
pink and blue shaded regions represent the contribution of load- 
dependent (aISE/LD) and independent hardness (H∞), respectively, to-
ward the hardness at any value of the load. As expected from the 
formulation, we observe that the H∞ represents the asymptotically 
convergent hardness value. This value remains constant irrespective of 
the applied load. Thus, H∞ can be used to describe the inherent hardness 
of the glass. In contrast, the load-dependent aISE /LD decreases mono-
tonically, asymptotically tending to zero with increasing applied load. 
Thus, the contribution of H∞ towards the hardness is significantly more 
than the aISE/LD, except for low load values. It should be noted that both 
H∞ and aISE are computed directly from the C1 and C2 terms predicted by 
the SRIMP model. Thus, the SRIMP formulation provides a framework to 
decouple the contribution of ISE in hardness and directly predict them 
from the glass composition. However, due to the black-box nature of the 
NNs, it is not clear how each of the components in the composition 
controls the C1 and C2 terms, and in turn, aISE and H∞. Therefore, we use 

Fig. 3. Predicted values of hardness (a) without load and (b) with the load as input features using the ML models with respect to the experimental values for both the 
training and test datasets. Inset shows a histogram of errors, where the shaded region represents the 95% confidence interval. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Predicted hardness values using SRIMP with respect to the experimental 
values for both the training and test datasets. A histogram of errors is plotted in 
the inset, where the shaded region represents the 95% confidence interval. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Histogram of the Manhattan distance between a glass composition and 
its nearest neighbor from the training set along with three selected glass com-
positions prepared and tested in-house, 25Na2O–37.5B2O3–37.5SiO2 (NBS), 
25Na2O–75B2O3 (NB), and 25Na2O–75SiO2 (NS). The compositions are in mol 
%. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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the SHAP to interpret the effect of different elements present in the glass 
on the Vickers hardness. 

3.6. Model interpretation using SHAP 

SHAP is a model-agnostic post-hoc tool that can be used to interpret 
ML models. SHAP shows how each input feature increases or decreases 
the output value. Fig. 8(a-b) shows the SHAP bar and violin plots 
explaining the MLHL predictions. We analyze the MLHL predictions in 
this case, as they cover a larger compositional space than the SRIMP 
model. Moreover, here we focus on interpreting the role of individual 
elements toward the hardness glasses, not the ISE. Since the MLHL 
model provides good predictions for the compositions considered in the 
dataset, it is reasonable to apply the SHAP technique to interpret the 
MLHL model. While the bar plots reveal the mean absolute effect of a 
feature on the model predictions, violin plots indicate the directionality 
of the feature’s impact on the model predictions, whether positively or 
negatively. 

Fig. 8(a) shows that the top ten chemical elements governing the 
hardness of inorganic glasses are nitrogen (N), silicon (Si), sodium (Na), 
lithium (Li), phosphorous (P), and aluminum (Al), magnesium (Mg), 
boron (B), calcium (Ca), and lead (Pb). However, while some of these 
features impact the hardness positively, others have a negative impact. 

To this end, we analyze the role of these elements through the violin 
plots (Fig. 8(b)), where the x-axis represents the SHAP value in GPa (that 
is, the contribution toward hardness by a given datapoint), and color 
represents the normalized feature value. Among these top ten elements, 
while N, Si, Ca, and Mg positively affect the hardness (they increase it), 
Na, P, and Pb have negative effects. Other elements that increase the 
hardness are La, Zr, Ti, and Zn. Interestingly, Al, B, and Li have mixed 
effects, that is, the effect of these elements on hardness depends on the 
other species present in the system. Note that elements such as B and Al 
are well-known to have anomalous effects due to their unique structure 
characterized by the Loewenstein rule and the boron anomaly [9,56,57]. 

The property dependence on glass composition is highly non-linear 
(especially for multicomponent glasses), reflecting that glass proper-
ties depend on more than a single physical-chemical feature of each 
element (e.g., field strength, atomic packing density, dissociation en-
ergy, polarizability, etc.). To address these non-linear dependencies, we 
have opted for a ML model agnostic approach (SHAP) to unveil 
composition-property relationships. 

Traditionally, glass properties are analyzed and understood in terms 
of the network forming and network modifying species present in the 
glass structure. To interpret the MLHL model similarly, we performed a 
SHAP analysis separately for the network forming and modifying ele-
ments (see Fig. 9). We observed that most of the network formers, except 

Fig. 6. Actual versus predicted hardness as a function of the applied load for three selected glass compositions prepared and tested in-house, (a) 
25Na2O–37.5B2O3–37.5SiO2 (NBS), (b) 25Na2O–75B2O3 (NB), and (c) 25Na2O–75SiO2 (NS), with the compositions in mol% using MLHL, and SRIML model. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Predicted hardness as a function of applied load for (a) NBS, (b) NB, and (c) NS glass compositions using the SRIMP model. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Si and B, decrease the hardness with increasing concentrations. To un-
derstand this, we can consider an existing model of glass hardness based 
on topological constraint theory [58]. Predicting hardness depends on 
the density of rigid bond constraints. That is, both the connectivity of the 
network and the atomic packing density govern glass hardness. For 
example, this explains why pure SiO2 glass is relatively hard but is not 
among the hardest known oxide glasses. Neglecting some defects, SiO2 
glass has a fully polymerized structure with four bridging oxygens per 
tetrahedron, but this connectivity is counterbalanced by its very low 
packing density (open structure) [59]. Furthermore, network formers, 
such as P, have a double bonded terminal oxygen, which is not consid-
ered a part of the network. Therefore, a fully polymerized phosphorous 
atom is effectively three-fold coordinated, providing fewer bond con-
straints per atom than silicon [60]. 

Fig. 9(b) indicates that Na decreases the hardness. In contrast, other 
network modifiers either increase the hardness or exhibit mixed effects, 
that is, they exhibit different behavior depending on the other elements 
in the glass composition. This complex behavior can be understood as 
follows. While the network modifiers, such as Na, will generally tend to 

decrease the network connectivity by breaking bridging oxygen bonds, 
they can also increase the atomic packing density (e.g., in the case of 
silicate glasses), thus creating competing effects on glass hardness, as 
discussed above. Moreover, in the case of, e.g., borate-containing 
glasses, modifiers can also increase the connectivity of network for-
mers by converting boron from three- to four-fold coordination. Indeed, 
the SHAP values have proven to be insightful in determining the 
contribution of each feature (chemical elements) towards property 
value, and several agree with existing knowledge. For example, the 
Loewenstein rule and Boron anomaly are well-known and have been 
observed experimentally and predicted by SHAP in previous articles for 
other properties and here for hardness [25,31,61]. For convenience, we 
summarize some of these important results in Table 2 with suitable 
references corresponding to each effect predicted by our SHAP analysis. 
Note that these predictions should be considered as general guidelines, 
as there will be exceptions depending on the chemical environment. 

Altogether, the analysis above presented can be useful for identifying 
the components that, on average, affect hardness positively or nega-
tively, thereby enabling experimentalists to design new glasses in a 

Fig. 8. SHAP plot for the (a) absolute impact of the chemical elements on hardness and (b) relative impact of the elements on hardness. In (b), the color of points 
represents the feature value, that is, in terms of the mol% of the oxide components in the glasses, with red representing high contents and blue representing low 
contents in the glass composition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. SHAP values for (a) the glass network forming elements and (b) the glass network modifying elements. The color of points represents the magnitude of the 
mol% of the elements. 
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rational and effective fashion. 

4. Conclusions 

We used ML and symbolic reasoning to describe, predict, and inter-
pret the chemical composition and load dependency of the hardness of 
inorganic glasses. To this end, we constructed a carefully curated dataset 
of glasses. We then employed a NN model for predicting the glass 
hardness, which exhibits good performance but is unable to capture the 
ISE. To address this challenge, we proposed and successfully tested a 
SRIMP framework combining symbolic reasoning Bernhardt’s equation 
and ML. We demonstrate that the resulting SRIMP model can capture the 
ISE for completely unseen compositions and load values. 

Further, the framework allows the deconvolution of hardness into 
load-independent and load-dependent terms. The load-independent 
hardness proposed here can be used as an inherent material property, 
which along with the load-dependent term, can predict the hardness 
corresponding to any load. Such a framework allows for easy and 
rational comparison of the glass hardness measured at different loads. 
Finally, employing the SHAP analysis, we interpreted the black-box ML 
models to identify the role of individual elements in governing the 
hardness. Such an approach enables the accelerated design of glasses 
with targeted hardness. 
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