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1 Introduction

When any liquid is cooled below its equilibrium melting or liquidus temperature, one or several
crystalline phases may form. This process takes place in two steps: the formation of clusters and
their subsequent evolution to macroscopic crystals. The first step is denoted nucleation, and the
second is crystal growth. The effect of simultaneous crystal nucleation and growth is
denominated crystallization. Crystallization counteracts vitrification, the freezing of a melt into a
glass. Upon heating, the same phenomenon results in glass devitrification.

Eight decades ago, G.W. Morey [1] stated that “Devitrification is the chief factor which limits the
composition range of practical glasses, it is an ever-present danger in all glass manufacture and
working, and takes place promptly with any error in composition or technique.” The prevention of
crystal nucleation and growth upon cooling of any liquid — or upon heating of gels — gives rise to a
glass. On the other hand, the global acceleration of technological breakthroughs, marked by high-
tech industrial processes and devices, requires materials with unusual microstructures and
enhanced or novel properties, such as transparency, bioactivity, ionic conductivity, or
machinability, sometimes combined with excellent dielectric, magnetic, chemical, mechanieal, or
thermal shock resistance.

To meet this demand, significant efforts have focused on the synthesis of new glasses and glass
ceramics. In both cases, crystallization control plays such a decisive role that reliable models of
crystallization processes are needed. Hence, knowledge about the possible pathways of
crystallization allows one to formulate kinetic criteria to answer the questions: “Under what
conditions can a liquid supercool and transform into a glass, and under what conditions is
substantial crystallization expected to occur on the cooling path?” In attempts to produce new
glasses, crystal nucleation and growth must be avoided. Conversely, controlled crystallization can
be used to synthesize fully crystallized materials or semicrystalline glass ceramics (Chapter 7.11).
Several monographs provide detailed information on these materials (e.g. [2, 3]).

However, these technological aspects represent only one side of the widespread scientific interest
in the kinetics of nucleation and crystallization in glasses. In addition to their practical relevance,
glass-forming liquids serve as remarkable experimental models of metastable, highly viscous
systems, in which crystallization and liquid-liquid phase separation processes can be quickly
initiated, accelerated, or delayed. These processes can thus be studied conveniently under very
different conditions on a laboratory timescale. Such analyses may even include the dependence of
the kinetics of phase formation on the thermal history of the sample. For this reason, glass-
forming liquids have served as guinea pigs for testing crystal nucleation and growth theories,
providing a deepa insight into different phase formation processes. And lastly, crvstﬁlhzatlon
produces impressive, uniquely beautiful (and frequently hidden) nano- and microstructures, as
demonstrated by E.D. Zanotto [4], which serves as an additional motivation to join and pursue
research in this endless, albeit highly gratifying quest to unveil the deeply hidden intricacies of
glass crystallization and the resulting properties of glass ceramics.

To prevent or induce controlled crystal nucleation and growth in a glass requires some theoretical
understanding of these complex phenomena. This chapter, therefore, outlines the basic
fundamental aspects of the theory of erystallization of supercooled inorganic glass-forming
liquids. Section 2 begins with a description of crystal nucleation kinetics, followed in Section 3 by
an overview of some basic modes of crystal growth. Section 4 describes overall erystallization
kinetics, i.e. the evolution of the volume fraction of erystalline phases as a function of time by
nucleation and growth. In addition to some well-established results, we also briefly discuss some
open problems and possible approaches to their resolution. A summary of relevant results and
perspectives for future developments (Section 5) completes this chapter.



Pascal Richet (Ed.),
Encyclopedia of Glass Science, Technology, History, and Culture, Volume 1, Wiley 2021,
Chapter 5.4, p. 559-568.

2 Crystal Nucleation and Classical Nucleation Theory

The physical nature of nucleation phenomena in general and crystal nucleation in supercooled
liquids in particular was first established and described by J.W. Gibbs [5]. His basic idea can be
illustrated by the following approximation for the change of Gibbs free energy, AG, during crystal
cluster formation:

’ 4n .
AG = —nAu+ 6A,Au = iy - i, A = 4nR* n = gc,,Rj. @

In formulating Eq. (1), it is assumed that spherical crystalline nuclei form in an initially
homogeneous liquid. These nuclei are described by their radius, R; surface area, 4; and the
number, n, of particles (atoms, molecules, or more generally the basic structural units of the
crystalline phase) they contain. In Eq. (1), Au is the difference of the chemical potentials per
particle in the liquid (1) and the crystal (i¢r), 0 is the specific interfacial energy, and cq is the
particle number density in the crystal cluster. From the specification of the parameters, it is
evident that Eq. (1) is valid only for the simplest case of crystallization when liquid and crystal
consist of the same structural units. This kind of crystallization is denoted as congruent. Also, it is
assumed here that the state of the crystal clusters is independent of their sizes. Qualitatively, the
situation does not change in general cases of incongruent crystallization, when the crystal and
liquid phases have different compositions.

According to thermodynamic evolution criteria, at constant pressure, P, and temperature, T,
spontaneous macroscopic processes are tied to a decrease in the Gibbs free energy, G, of the
system. For this reason, if y < ey and Ap = (1 - tep) < 0, AG in Eq. (1) is a monotonically
increasing function of cluster size for any possible values of R, so that crystal clusters of any size
will disappear over time. The function AG = AG(R) takes on the shape shown in Figure 1a only if
the thermodynamic driving force for crystallization, Ay, is positive (tg, < t1). In this case, cluster
formation and growth are accompanied by a decrease in the Gibbs free energy if the surface term
in the expression for AG is neglected. However, this tendency for decreasing Gibbs free energy is
counteracted by the surface term, i.e. the surface contribution to Gibbs free energy initially leads
to an increase in AG with increasing crystal size. Small crystal clusters formed in the system
disappear, and only clusters larger than a critical size, R., can grow to macroscopic dimensions. As
demonstrated in Figure 1a, the critical cluster size is defined by the maximum of AG(R). Systems
showing such behavior are denoted as metastable. Metastable states are stable with respect to
small fluctuations (generating clusters with sizes R < R.) but unstable with respect to larger
fluctuations (leading to clusters with sizes R > R..). Thus, viable (supercritical) crystal clusters

capable of deterministic growth must exceed a critical size. It is this criticality that determines the
crucial impact of these embryos of the newly evolving phase on the nucleation processes.

Taking the chemical potential difference and the specific interfacial energy as constants (i.e.
employing the so-called “capillarity” approximation), one can derive the critical cluster size and
the value of AG, at the critical size from the extremum condition d(AG)/dT = o. These parameters

are given by

2 1 l6n o N >
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These relations remain valid if more accurate expressions for Au are employed and the curvature
dependence of the interfacial energy is accounted for. The concepts discussed above are illustrated

in Figure 1a within the framework of the classical model of nucleation, whereby the change in the
Gibbs free energy of cluster formation reaches a maximum AG = AG,. for the critical cluster size, R

= R.. In this model, the clusters grow or decay while preserving their properties, so size is the only
parameter specifying the state of the cluster.

R

A more realistic picture of cluster formation is presented in Figure 1b, where not only the size but
also the composition (described by the number of particles, nj, of two components) of the cluster
may change. In this case, the critical cluster corresponds to a saddle point of the Gibbs free energy
surface. The evolution to the new phase via the saddle is shown by the dark (red in the colored
version) curve. In Figure 1c, we show an alternative to the classical picture of phase evolution,
which is similar to spinodal decomposition (cf. [3]). In this case, the composition of the critical
crystal cluster changes retaining a nearly constant size and only after completion of this process
the kinetics are governed by the growth of clusters with a roughly constant composition. In a
variety of cases in multicomponent systems [3], the latter path of evolution (Figure 1c) — and not
the classical picture (Figure 1a) — dominates phase formation.
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Figure 1 The classical model of nucleation and possible generalizations. (a) With only one
parameter employed to describe the state of the cluster. (b) Change of Gibbs free energy in cluster
formation when more than one parameter is used. (c) Alternative to the classical scenario of
crystallization in multicomponent liquids .

Critical clusters do not form according to the predictions (the evolution criteria) of macroscopic
thermodynamics, but instead by stochastic thermal fluctuations. According to underlying
assumptions of statistical physics, the probability of such fluctuations can be expressed as a
function of the minimum work for a reversible thermodynamic process. The minimum work to
form a critical cluster is W, = AG,, where AG, is given by Eq. (2). This quantity, W, the work of
critical cluster formation, plays a decisive role in nucleation theory. Initially, the nucleation rate is
small. Then, after a certain time interval, 7, the so-called time lag for nucleation, the rate of
nucleation, J (i.e. the number of supercritical clusters formed per unit time in a unit volume of the
liquid), approaches a constant value, the steady-state nucleation rate, .J5. In an early description of
this initial period of nucleation by Zeldovich (cf. [3]), the nucleation rate as a function of time, t,
was expressed by the relation

J(¢) =]$exp(—§). (3

The initial stage of nucleation observed in experiments is often described by the Collins—
Kashchiev relation (cf. [3]):

(4)

This mathematical equation gives a relation for the number, N(t), of supercritical crystallites as a
function on time, t. For longer times than some induction time (t >t;,4), Eq. (4) can be

approximated by



Pascal Richet (Ed.),
Encyclopedia of Glass Science, Technology, History, and Culture, Volume 1, Wiley 2021,
Chapter 5.4, p. 559-568.

10"
12 .
1078 4 )
08 o
10 4 ) oG,
i 101 - 4 @ 3 o QQ
™ 04 Q.
® 10° cgmﬂa °
" W 7
= " %0 2 4 C:)Ei . 6’6 ©
- < 107 A 2
4 105 | 1 3MaO-A1,05:35i0,
o] Lizo-zsioz (430°C) 1 |- Li,0-25i0,
21 22:0-25222{:}6355% (465°C) 102 B=Mag 026035105
ax0-1Cal-3310, i R
W/ 2Na,0-1Ca0-3Si0, (470°C) { |4 2N2z0-1Ca0-3810, 1 o
O ' T T T T T T 101 T T
0 2 4 6 8 10 12 14 0.45 0.5 0.55 0.6 0.65
tr T,

Figure 2 Experimental nucleation rate data for several silicate glasses. (a) Reduced crystal
number density, (N(t)/J; 1), versus reduced nucleation time, (f/7). The solid line is the master
curve calculated from Eq. (4). (b) Reduced nucleation rate versus reduced nucleation time
calculated from Egq. (4). (¢) Experimental steady-state nucleation rate, Js, versus reduced
temperature, T/Ty,, for four stoichiometric glasses. Ty, is the melting temperature (see [6] for
details).

o)
n” (5)
N(t) = Js(t - tind), tlind = ET-
where 7 is the nucleation time lag. Over a sufficiently large timescale, Eqs. approach steady-state
nucleation conditions, i.e. (dN/dt) = Jg = constant. With W, = AG,, the steady-state nucleation

rate, Jg, can be written as [3]

AG. W, [¢ (D ©)
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0

where D is an appropriately chosen diffusion coefficient and dy, is a size parameter explained in

greater detail below. Experimental results that illustrate the establishment of a steady-state
nucleation rate and its dependence on temperature are shown in Figure 2.

For the case shown in Figure 1a (congruent crystallization, assuming that the state of the cluster
does not change with size and is the same as that of the newly evolving macroscopic phase), D in
Eq. (6) is the diffusion coefficient of the structural building units in the liquid, and d, is their
diameter. If several components of the liquid diffuse independently, D must be replaced by an
effective diffusion coefficient, which is a combination of the partial diffusion coefficients and the
concentrations of the different components in the liquid, and dy must be replaced by the average
size of these independently moving species [3].

In the application of the theory, it is also often assumed that the effective diffusion coefficient can
be replaced by the Newtonian shear viscosity, 17, via the Stokes—Einstein—Eyring (SEE) equation

[3]:

po ksl @)
dn!}

However, its applicability to states near and below the glass transition temperature (where
homogeneous crystal nucleation is commonly observable) has been questioned even for “one-
component” congruent systems, where decoupling of relaxation (expressed by viscosity) and
atomic transport (represented by the diffusion coefficient) is frequently reported (e.g. [7]).
Application of this expression is even more questionable for multicomponent systems. Another
issue is related to the case of highly viscous glass-forming melts, for which a non-Newtonian
viscosity should be employed to describe viscous flow [3]. Leaving aside the reservations above, by
applying the SEE relationship, one arrives at the following expression for the steady-state
nucleation rate:
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To apply Eq. (8) to the interpretation of experimental data, one has to determine the work of
critical cluster formation, W, = AG,, i.e. to specify the thermodynamic driving force of phase
formation, Ay, and the specific interfacial energy, o in Eq. (2). Assuming that the bulk properties
of the crystal clusters are the same as those of the macroscopic crystals, one arrives at the simplest
approximation by a Taylor expansion of Au(T) in the vicinity of the melting temperature:

™ _ T (9)
Au(T) = Ahm(l ~ Tm),

where Ahy, is the enthalpy of melting per structural unit of the crystal and Ty, is the melting
temperature (generalizations of this relation can be found in [3]).

Since the interfacial energy of the critical nucleus is not directly measurable, it is normally
evaluated using the Stefan—Skapski—Turnbull rule [3]:

q

6 =6—5"55 dm = NalIm, 4o
N, vm

via the molar enthalpy of melting, g,;,- In Eq. (10), N is Avogadro's number, € is a factor varying

from 0.4 to 0.6, and vy, is the molar volume. This relation has been widely employed (see [3] and

Baidakov et al. [8]). By substituting these relations into the expression for the steady-state
nucleation rate, its temperature dependence can be interpreted straightforwardly. The steady-
state nucleation rate J; is equal to zero at T = Ty,,, where Au = o, cf. Eq. (9). This rate increases
with decreasing temperature because of the decrease in the work of critical cluster formation
borne out by Eq. (2), until this trend is overcompensated by the exponential increase in viscosity
with decreasing temperature.

When these classical concepts are employed to interpret experimental data, a qualitative and
partly quantitative agreement is sometimes found (cf. Figure 2). In most cases, however, the
classical approach underestimates the steady-state nucleation rates by 20—55 orders of
magnitude, e.g. [6]. In the classical approach, the deviations between experiment and theory can
be (artificially) resolved by the introduction of a size dependence of the specific interfacial energy,
as discussed by Gibbs [5] and later by others, particularly by Tolman (cf. [3]). But this type of
solution gives rise to other problems [6]. Another possible solution, in agreement with results of
computer simulations and density functional computations, consists in accounting for the size
dependence not only of the surface but also of the bulk properties of the clusters of the newly
evolving phases. The bulk properties of the clusters generally depend on their sizes. Hence, the
surface properties, including the surface tension, must also be size dependent. Thus, this approach
also leads to a size dependence of the surface energy, but the primary variation of the properties of
the clusters lies in the size dependence of their bulk properties.

Thermodynamically, one can treat these problems by generalizing the classical Gibbs approach
(cf. [3]), which allows for a description of the cluster properties as a function of size and degree of
supercooling. With this new thermodynamic (generalized Gibbs) approach, one concludes that the
classical theory — assuming macroscopie bulk properties of the clusters and employing the
capillarity approximation for the specific interfacial energy — overestimates the work of critical
cluster formation, and hence, underestimates the values of steady-state nucleation rates [3].
Therefore, the classical theory with the “capillarity” approximation may serve as a tool for roughly
estimating the nucleation rate curve (i.e. its dependence on temperature and/or pressure), but it
must be improved to account for the above-specified effects for a detailed and quantitatively
accurate description of the phenomenon.

So far, we have considered the case of erystal nuclei that form evenly within a pure liquid. This
mechanism is known as homogeneous nucleation. However, nucleation can be readily catalyzed
by impurities, such as solid particles embedded in the volume or present on the external surface of
glasses. Nucleation originating at such preferential sites is denoted as heterogeneous (e.g. [3, 9])
and can be described by the theoretical concepts outlined above if the work of critical cluster
formation for homogeneous nucleation, Wy, is replaced by W.®. Here, @ < 1 is the nucleating
activity of the heterogeneous nucleation core, and its value depends on the mechanism of
nucleation catalysis. As a rule, heterogeneous nucleation dominates at small supercooling because
of the lower work of critical cluster formation than that of homogeneous nucleation. At high
supercooling, homogeneous nucleation dominates due to the much larger number of sites (all
“molecules” of the system) where homogeneous nucleation may proceed.
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The reader should note that, in certain cases, the evolution of the new phase may not proceed via
the saddle shown as a dark curve in Figure 1b (in red in the colored version) but via a ridge
trajectory indicated by a light curve in Figure 1b (in yellow in the colored version), if such a
trajectory is kinetically favored. This type of behavior may be expected to occur in crystallization
occurring at large degrees of supercooling because of the disordered and nonstoichiometric nature
of the crystals that precipitate in the early stages.

Frequently, several different stable or metastable phases may be formed at some given initial state
of the supercooled liquid. As Ostwald suggested (cf. [3]), in such cases the most favorable stable
phase is not formed immediately. Instead, the final stable phase is reached via several stages in
which different metastable phases are formed until the most stable phase is developed: this is the
so-called Ostwald's rule of stages or Ostwald's step rule. As first proposed by Stranski and
Totomanov (cf. [3]), this evolution path can also be explained by kinetic considerations.

3 Basic Models of Crystal Growth in Supercooled Liquids

It is now generally accepted that the properties of the crystal-liquid interface have a decisive
influence on the kinetics of crystallization. Theoretical treatments of crystal growth have therefore
focused closely on the interfacial structure and its effect on crystallization. With the assumption of
congruent crystallization, three standard models have been developed for treating crystal growth
theoretically (e.g. [10, 11]). These models are deseribed briefly below:

i. Normal growth: The interface is pictured as rough at an atomic scale. Growth takes place at
step sites, which represent a sizable fraction (0.5—1.0) of the interface. Assuming that this
fraction does not change appreciably with temperature, the growth rate, u(7), can be

expressed as
. D . Apu (11)
U= . exp WT) |

where fis close to unity and Ay is treated as a positive quantity.

il. Screw dislocation growth: This model assumes the interface is smooth but imperfect at an
atomic scale. Growth takes place at a few step sites provided by serew dislocations that
intersect the interface. The growth rate is still given by Eq. (11), where fis now the fraction of
preferred growth sites (on the dislocation ledges) at the interface. In this case, fis given
approximately by f~(Ty, — T)/(2nTy,) [7]. More generally, according to Jackson [10], f=
(Asy/kp)E holds, where As, is the entropy of fusion per particle and £ is the number of
nearest-neighbor sites in a layer parallel to the surface divided by the total number of nearest-
neighbor sites. Factor § is the largest for the most closely packed planes of the crystal, for
which it is approximately equal to 0.5.

For f < 2, the minimum free energy configuration corresponds to half the available sites being
filled and represents an atomically rough surface. In contrast, for f > 2, the lowest free energy
configuration corresponds to a surface where few sites are filled and a few units are missing from
the completed layer, which represents an atomically smooth interface. Hence, for materials with
Asy, < 2kp, the most closely packed interface planes should be rough. For materials with 4sy, >
4kp, the most closely packed surfaces should be smooth, the less tightly packed surfaces rough,
and the growth anisotropy rate large.

iil. Surface nucleation or two-dimensional growth: According to this model, the interface is
smooth and perfect at an atomic scale and thus free of intersecting screw dislocations and
growth sites. Growth then takes place by the formation and growth of new two-dimensional
nuclei at the interface. In this case, the growth rate is expressed by

_C D Cy (12)
4= P\ T TaT)

where C, and C, are parameters that determine the time required for the formation of the two-
dimensional nucleus relative to that required for its propagation across the interface, respectively.

Possible growth modes are illustrated in Figure 3. Similarly to nucleation, the interplay between
increasing driving force for crystallization, Au, and decreasing diffusion coefficient (or increase in
viscosity) with decreasing temperature results in a maximum of the crystal growth rates. This
maximum is located at higher temperatures than that of the maximum of the steady-state
nucleation rate shown in Figure 2c.
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There are also other growth modes, which are rate limited not by processes at the liquid—crystal
interface but by mass transport toward the interface. A specific example is a diffusion-limited
segregation, which is of particular importance in multicomponent systems. Accounting for size
effects on the growth kinetics, one can express the rate for such a growth mode as (e.g. [11, 12])
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Figure 3 Crystal growth rates for Li,0-25i0, glasses obtained by different authors. The lines

correspond to the screw dislocation mechanism (full curve) and two-dimensional surface
nucleated growth (dashed curve) [7].
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Figure 4 Crystal morphologies formed by nucleation and growth in glass-forming liquids as
observed by optical microscopy (crystal sizes from 5 to 100 um). From top left to bottom right: (i,
ii, iv) LS crystals nucleated on defects of a Ca0Q-Li»0-SiO, glass surface during its preparation via

melting—cooling. (iii) Crystallization propagating from the surface toward the center of a
Ca0-Li,0-Si0, glass specimen; lithium metasilicate crystals nucleated on two perpendicular
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surfaces and grew toward the sample center. (v) Surface of a Ca0O-Li,O-SiO, glass sample after
cooling a melt in a DSC furnace; the large-faceted and needle-like crystals are calcium and lithium
metasilicates, respectively. (vi) Internal crystallization in a Ti-cordierite glass; pure stoichiometric
cordierite (2MgO-2A1,0-55i0,) glass underwent only surface nucleation, but the same glass
doped with more than 6 mol % TiO» shows internal crystallization of p-cordierite. (vii) Needle-like
crystals in CaO-Li,0-Si0, eutectic glass formed by internal crystallization in the temperature
range between the solidus and the liquidus; these wollastonite crystals appear on the cooling path.
(viii) Starlike NaF crystals inside a PTR glass (treatment at a high temperature near the solubility
limit).

where B is a combination of parameters describing the liquid under consideration, being
proportional to the effective diffusion coefficient governing the rate of supply of the different
components to the growing or dissolving cluster.

Equation (13) and its modifications for other growth modes serve as a basis for the theoretical
description of the competitive growth of clusters denoted as coarsening or Ostwald ripening. In
these late stages of phase formation, larger clusters may grow further only when subecritical
crystals are dissolved. The theoretical description of this process was first developed by Lifshitz
and Slezov (cf. [11]). Today it is often referred to as the Lifshitz—Slezov—Wagner theory. This
theory provides expressions for the average size, {R), and the number, N, of supercritical clusters
in the system as a function of time. For diffusion-limited growth (Eq. (13)), one obtains

' 1
(R)‘; xt, N -x?. (14)

An account of the effect of elastic stresses on coarsening, which leads to qualitative modifications
of the coarsening behavior, is reviewed in [3, 12].

The above relationships allow one to describe the growth of crystals with smooth planar or
spherical interfaces advancing in the liquid. However, more complex growth patterns do exist, and
more complex models of growth are required to properly take into account possible interfacial
instabilities, surface roughening, or other growth modes such as diffusion-limited aggregation
[11]. With such complex growth modes, a variety of intricate and beautiful crystal shapes may
evolve, some of which are illustrated in Figure 4.

4 Overall Crystallization and Glass-forming Ability: The Johnson-
Mehl-Avrami-Kolmogorov Approach

The overall crystallization of supercooled liquids occurs by a combination of crystal nucleation
and growth. The kinetics of such processes is usually deseribed by a theory independently derived
between 1937 and 1941 by Johnson, Mehl, Avrami, and Kolmogorov [13—-17] (JMAK theory). In
this approach, the evolution of the total amount of crystalline phase is described as a function of
time, accounting simultaneously for nucleation and growth. The basic equations of this approach
can be developed as follows.

Let us assume that, in a time interval d¢’(¢’, t’ + dt’), a number dAN{(t") =J(t")[V - V,,(t")] of clusters
of critical size is formed in the volume [V - V},(t')]. Here, V'is the initial volume of the glass-
forming melt and V},(t") the volume already crystallized at time t’. These clusters grow and, at time
t, occupy a volume

t

n 1
u(t"}dt”) , (5

where @y, is a shape factor and the integral term describes the growth of the dN(t’) clusters formed

at t’ until time t, i.e. in the time interval ({—t"), the exponent n is the number of independent
spatial directions of growth. Introducing the ratio, a,(t) = (Vy(t)/ V), between the current volume
of the crystalline phase versus the initial volume of the glass-forming melt, one has

dV,(tt) = wJ({E )V -V,(t))d (J

I

t

n 6
u(tu)dt”) _ (16)

Integration, i.e. taking the sum over all the time intervals dt’ in the range of (o, 1), yields

da,(t,t') = w,J(t')(1 —u,,(t’))dt'([

Jr
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Provided the nucleation and growth rates are both constant, one reaches as a special case

» 8
(In(f): l—exp(—(nmﬁ]untunn)_ (18)

Conversely, if a number Nj of supercritical clusters is formed immediately at time ¢ = 0, growing
in n independent spatial directions, one arrives instead at

a,(t) = 1- exp(-gNou"t"). (19)
The analysis of the time dependence of the a,(t)-curves thus leads one to the specification of
nucleation and growth kinetics.

The JMAK theory has been employed in numerous studies to analyze experimental data and
determine the degree of crystallinity as a function of time in both isothermal and non-isothermal
heat treatments of glass systems. Emphasis has usually been given to the determination of the so-

called Avrami coefficient m = n + 1 obtained from the slopes of experimental In[In(1 — a)~1] versus
In(?) plots. An overview of various nucleation and growth mechanisms and the resulting values of
the Avrami coefficient are given in [3]. However, there is some uncertainty in such analyses,
because different combinations of nucleation and growth laws may lead to the same Avrami
coefficient. For this reason, a separate investigation of the growth kinetics may be required to
reach definite conclusions [14].

It is important to underline that the JMAK theory, as given by Eqgs. (18) and (19), does not apply to
non-isothermal processes. These two equations are derived from the assumption of constant
nucleation and growth rates, which are not achieved in non-isothermal processes. Therefore, in
non-isothermal cases, the general relationships, Egs. (16) and (17), must be employed to describe
overall erystallization. This requires taking into consideration not only thermal nucleation
(formation of supercritical clusters due to thermal fluctuations at given values of critical cluster
size and thermodynamic barrier) but also athermal nucleation (i.e. the change in the number of
supercritical clusters due to the variation of the critical cluster size resulting from the change in
temperature).

Such considerations must also be taken into account when the JMAK formalism is employed to
determine whether a liquid will transform into a glass upon cooling or whether it will crystallize.
Following Uhlmann (cf. [10]), one can consider a supercooled frozen in liquid as a glass if, after
vitrification, the volume fraction of the crystal phase does not exceed a certain value of, say, 107°
(the detection limit by microscopy). Using appropriate expressions for nucleation and growth
rates, one can then compute (through Eq. (18) for isothermal conditions) the time required to
reach the volume fractions thus defined. In this way, one arrives at the so-called
T(ime)T(emperature)T(ransformation) curves (TTT curves) exemplified in Figure 5 (cf. also [18]
and figure 10.8 in [3]). These curves give some insight into the characteristic timescales required
to prevent measurable crystallization effects. One should keep in mind, however, that these curves
overestimate the critical cooling rates for glass formation by about one order of magnitude
because, as mentioned earlier, crystallization upon cooling proceeds under non-isothermal
conditions.

Using experimental nucleation and growth rate data, Rodrigues and Zanotto [19] calculated TTT
curves for different isothermal and non-isothermal crystalhzatmn situations. They also accounted
for the breakdown of the SEE equation at a temperature T}, (somewhat higher than T) where the
effective diffusion coefficient that controls crystal growth decouples from the value of diffusivity
calculated by the SEE equation (Eq. (7)). In Figure 5 we show an example of such a curve for a
stoichiometric BaO-2Ti0,-2Si0, glass, which undergoes copious internal homogenous crystal
nucleation. The agreement with experimental data (which, in this case, were also obtained in
isothermal conditions) is quite impressive, indicating that the JMAK equation is accurate if all the
assumptions involved in its derivation are met.
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Figure 5 Simulated TTT curves for a BaO-2Ti0,-2510, glass with crystallized volume fraction a =
0.05 using, in one approach, the screw dislocation growth model both above and below Ty, (tsq —
dashed line), and in the other the Arrhenius equation below Ty, (fpreakdown — solid line).
Experimental data points (black stars) obtained at 993, 1003, 1013, and 1023 K [15].

5 Perspectives

Significant advances in the understanding and control of crystal nucleation and growth processes
in glass-forming liquids have been achieved in the last five decades. It is now well-established that
almost all materials can vitrify when subjected to sufficiently fast cooling from the liquid state.
Thus, novel materials, such as metallic and chalcogenide glasses with unusual properties, have
been obtained successfully by very fast quenching. Also, controlled, catalyzed internal
crystallization of specific glasses has led to a variety of advanced glass ceramics that are now
manufactured commercially. More profound insights into glass crystallization processes, such as
precise predictions of nucleation and growth rates and critical cooling rates for glass formation,
based solely on materials properties, will depend critically on new developments in nucleation and
growth theories and computer simulations.

Despite the many advances achieved in understanding crystallization processes in glasses, some
problems remain open. Among the most important, we remark the following: (i) specification of
the bulk (structure, composition, density) and surface properties of the critical nuclei and sub- and
supercritical crystals as a function of their sizes; (ii) description of the temperature dependence of
the crystal nucleus—liquid interfacial energy and the degree of validity of the Stefan—Skapski-
Turnbull equation; (iii) applicability of the SEE (viscosity) relationship in calculating the effective
diffusion coefficients that control crystal nucleation and crystal growth; (vi) a clear understanding
of the causes of the breakdown of the SEE equation reported for crystal growth somewhat above
Tg; (v) unveiling the cause of the reported breakdown of the CNT in describing the temperature
dependence of experimental nucleation rates below Tg; (vi) a deeper understanding of the

relationship, if any, between the molecular structure of glass-forming melts and the nucleation
and growth mechanisms [20]; (vii) the relation between the sizes of supercritical nuclei vis-a-vis
the sizes of cooperatively rearranging regions (CRR) of the configurational entropy theory and the
domains of heterogeneous dynamics (DHD) envisaged in the structure of viscous liquids [21]; and
(viii) comparison of the estimated (by extrapolation) structural relaxation time and the
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characteristic time for crystallization of glass-forming liquids at the (predicted) Kauzmann
temperature, T [22, 23]. Such a comparison could resolve the paradox, following Kauzmann's
suggestion of the possibility that the putative state of negative entropy may never be reached
because crystallization would always intervene before structural relaxation. A detailed analysis of
the Kauzmann paradox and his hypothesis about the existence of a kinetic spinodal has been
performed recently [24]. In addition, the ratio of the mentioned times scales is of considerable
importance concerning the problem whether some basic assumptions of CNT concerning the
methods of determination of the thermodynamic driving force and the surface tension hold or not
for crystallization under time-dependent temperature and/or pressure [25]. All these problems, in
addition to several others not mentioned here, such as the development of novel glasses and glass
ceramics, having exotic, unusual compositions and combination of properties, serve as great
incitement for glass erystallization being a very active research topic!
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Table of Symbols
AG
Gibbs free energy difference

R
cluster radius

nucleus surface area
N

number density of supercritical erystallites
Au

chemical potential difference

M
the chemical potentials perparticle in the liquid

Her
the chemical potentials per particle in the erystal
a
surface free energy
ca
particle number density in the erystal cluster
P
pressure
T
temperature
G
Gibbs free energy
RC
critical radius
AG,
change in the Gibbs free energy for a critical cluster
nj
number of particles of the different components in the cluster
We
work of critical cluster formation
T
time-lag in nucleation

J
rate of formation of superecritical clusters
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Js
steady-state nucleation rate

time
ne
number of particles in a cluster of critical size
R
Maxwellian relaxation time
n
Newtonian viscosity
tind
induction time
dN
change of number of clusters of critical size
dt
time interval
kp
Boltzmann's constant
D
diffusion coefficient
do
diameter
T'm
melting temperature
Ahpy,
heat of melting of one crystal phase particle
9m
heat of melting
Na
Avogadro's number

C
correction factor

I
fraction of preferred growth sites
Asy,
entropy of melting
Ca, Cq
parameters determining the time required for the formation of the two-dimensional nucleus
and for its propagation across the interface, respectively.
B
combination of parameters proportional to the effective diffusion coefficient
(R)
average size of the nuclei
dr’
time interval
| %
volume
Va
volume crystallized
Wn
shape factor
an(t) = (Va(D/V)
time-dependent crystallized fraction
No
number of supercritical clusters
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n
number of independent spatial directions

T
> Stokes—Einstein breakdown temperature
Tg
glass transition temperature
Tx
Kauzmann temperature

0]
catalytic activity factor of a heterogeneous nucleation core
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