After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE AIM TO RETURN YOUR CORRECTIONS WITHIN 48 HOURS OF RECEIPT OF YOUR PROOF, THIS WILL ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF YOUR ARTICLE

- READ PROOFS CAREFULLY

 This will be your only chance to correct your proof
 Please note that the volume and page numbers shown on the proofs are for position only

- ANSWER ALL QUERIES ON PROOFS (Queries are attached as the last page of your proof.)

 List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post

- CHECK FIGURES AND TABLES CAREFULLY

 Check size, numbering, and orientation of figures
 All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article
 Review figure legends to ensure that they are complete
 Check all tables. Review layout, title, and footnotes

- COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA) if you have not already signed one

 Please send a scanned signed copy with your proofs by e-mail. Your article cannot be published unless we have received the signed CTA

- OFFPRINTS

 Free access to the final PDF offprint or your article will be available via Author Services only. Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers.

Additional reprint and journal issue purchases

- Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: http://offprint.cosprinters.com/cos/bw/
- Corresponding authors are invited to inform their co-authors of the reprint options available.
- Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsuk@wiley.com
- For information about ‘Pay-Per-View and Article Select’ click on the following link: http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html
The editors of this journal recognize that studies in tissue engineering and regenerative medicine cost money and may make use of commercial products and thus pose a potential for conflict of interest. As a conflict of interest may affect the assessment or judgment of an author, we ask that all authors (including each of the co-authors) complete the following form.

Check (✓) all that apply. Feel free to provide additional information on an attached page.

Corresponding Author Only: (Co-authors see below.)

• Potential Study Interpretation Conflicts (Choose one or more)
 *1 ____Some or all of the data that were used in this study were provided by a company with a vested interest in the product being studied.
 *2 ____The sponsor of this project had the right of commenting but the authors retained the right to accept or reject comments or suggestions.
 *3 ____The sponsor of this project had the right of final editing and/or approval of the manuscript submitted.
 *4 ____None

All Authors: (Includes corresponding author and all co-authors.)

• Potential Financial Conflicts (choose one or more)
 *1 ____I, my spouse, or one of my dependent children is an employee of a company whose product is being studied.
 *2 ____I, my spouse, or one of my dependent children has significant equity interest in the company that owns the product being studied. (Equity means a partial or total ownership interest, such as shares of stock or securities, stock options, warrants, and other rights to purchase stock or securities. Significant equity interest is defined as an equity interest that, when aggregated for the individual and the individual’s spouse and dependent children, is more than US $10,000 or more than 5% of the equity in a company. Ownership of mutual fund shares does not constitute a significant equity interest.)
 *3 In the past three years I have:
 ____been paid as a consultant (or in a similar capacity) by a company with a vested interest in the product being studied, on issues related to the product being studied;
 ____been paid as a consultant (or in a similar capacity) by a company with a vested interest in the product being studied, on issues unrelated to the product being studied;
 ____received unrestricted research or educational support from a company with a vested interest in the product(s) being studied.
 *4 ____A company whose product is being studied has provided funding to support the work on this project.
 *5 ____None

• Other Potential Sources of Conflict of Interest.
Conflicts of interest may be personal, commercial, political, academic or financial.
 *1 ____Yes, specify:__

 *2 ____None
Biosilicate® and low-level laser therapy improve bone repair in osteoporotic rats

Paulo Sérgio Bossini1, Ana Claudia Muniz Rennó2*, Daniel Araki Ribeiro2, Renan Fangel1, Oscar Peitl3, Edgar Dutra Zanotto3 and Nivaldo Antonio Parizotto1

1 Department of Physiotherapy, Federal University of São Carlos (UFSCar), Rodovia Washington Luís (SP-310), km 235, São Carlos, SP, Brazil
2 Department of Biosciences, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos, SP, Brazil
3 Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos (UFSCar), Rodovia Washington Luís (SP-310), km 235, São Carlos, SP, Brazil

Abstract

The aim of this study was to investigate the effects of a novel bioactive material (Biosilicate®) and low-level laser therapy (LLLT) on bone fracture consolidation in osteoporotic rats. Forty female Wistar rats were submitted to ovariectomy (OVX) to induce osteopenia. Eight weeks after surgery, the animals were randomly divided into four groups of 10 animals each: a bone defect control group (CG); a bone defect filled with Biosilicate group (BG); a bone defect filled with Biosilicate and irradiated with LLLT at 60 J/cm² group (BG60); and a bone defect filled with Biosilicate and irradiated with LLLT at 120 J/cm² group (BG120). Bone defects were surgically performed on both tibias. The size of particle used for Biosilicate was 180–212 µm. Histopathological analysis showed that bone defects were predominantly filled with the biomaterial in specimens treated with Biosilicate. LLLT with either 60 or 120 J/cm² was able to increase collagen, Cbfa-1, VGEF and COX-2 expression in the circumjacent cells of the biomaterial. A morphometric analysis revealed that the Biosilicate + laser groups showed a higher amount of newly formed bone. Our results indicate that laser therapy improves bone repair process in contact with Biosilicate as a result of increasing bone formation, as well as COX-2 and Cbfa-1 immunoexpression, angiogenesis and collagen deposition in osteoporotic rats. Copyright © 2010 John Wiley & Sons, Ltd.

Received 17 January 2010; Accepted 14 April 2010

Keywords Biosilicate®; low level laser therapy; bone repair; osteoporotic rats

1. Introduction

Osteoporosis is defined as a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk (Anonymous, 1993). The decreased bone mass and bone mineral density due to osteoporosis probably lead to a delay in fracture healing rates and bone repair quality (Hollinger et al., 2008). Many authors suggest that, in osteoporotic people, there is a decreased proliferative activity of osteoblast progenitor cells and gene expression, an impairment in osteoblast function, a diminished osteoblast response to signalling and an imbalance between the coupling of bone formation and resorption (Kubo et al., 1999; Meyer et al., 2001). Consequently, bone healing in osteoporotic individuals may be delayed and new bone quality may be poor (Hollinger et al., 2008).

In this context, there is a critical need to develop technologies capable of treating osteoporotic fractures (Gauthier et al., 2005). One promising treatment is the use of bioglasses and polymers, which seem to induce osteogenesis and stimulate fracture healing (Clupper et al., 2003; Thomas et al., 2005). To date, a wide variety of biodegradable polymers, bioactive glasses and glass–ceramics have been used as grafts in the treatment of large bone defects, mainly due to their facility to adapt to defect shape, their potential to stimulate osteogenesis.
and their capability to influence bone bonding (Lu et al., 2007). However, the success of the biomaterial implant and the improvement of the fracture consolidation are dependent on many characteristics of the material, such as composition, solubility and particle size (Vogell et al., 2001).

One of the most common and studied bioactive glasses is Bioglass® 45S5, which has been reported as the bioactive material with the highest bioactivity index (Clupper et al., 2003). Recently, our research group has developed a novel fully-crystallized bioactive glass—ceramic of the quaternary $P_2O_5-Na_2O-CaO-SiO_2$ system (Biosilicate®; Patent Application WO 2004/074199; Fundação Universidade Federal de São Carlos, 2004) with improved properties. Biosilicate has showed a stimulatory effect on bone cell metabolism (Moura et al., 2007). By comparing the growth of osteogenic cells on Biosilicate and Bioglass® 45S5 disks for a period of up to 17 days, Moura et al. (2007) found that although no significant differences were detected in terms of protein content and alkaline phosphatase activity at 11 and 17, Biosilicate supported significantly larger areas of calcified matrix at day 17. The results indicate that full crystallization of some bioactive glasses in a range of compositions of the system $P_2O_5-Na_2O-CaO-SiO_2$ may promote enhancement of in vitro bone-like tissue formation in an osteogenic cell culture system.

Similarly, a significant body of evidence has now accumulated demonstrating that low-level laser therapy (LLLT) also has a positive effect on bone tissue metabolism and fracture consolidation (Luger et al., 1998; Ozawa et al., 1998; Renno et al., 2007). When laser is applied to tissue, the light is absorbed by chromophore photoreceptors located in the cells. Once absorbed, the light can modulate cell biochemical reactions and stimulate mitochondrial respiration, with the production of molecular oxygen and ATP synthesis (Renno et al., 2009). These effects are known to increase the synthesis of DNA, RNA and cell-cycle regulatory proteins, therefore promoting cell proliferation (Renno et al., 2007). In vitro studies using osteoblastic cells showed that LLLT is capable of increasing mitochondrial activity (Renno et al., 2009), osteoblast DNA and RNA synthesis, bone nodule formation (Trelles and Mayayo 1987), osteocalcin and osteopontin gene expression and ALP activity (Oliveira et al., 2007). Also, the LLLT has demonstrated to be able of accelerating the process of fracture repair in rabbits and rats, increasing the callus volume and bone mineral density (Stein et al., 2005). However, little attention has been given to the effect of LLLT on bone with osteopenia or osteoporosis. Our group showed that LLLT had a positive effect on osteogenesis in rats (Matsumoto et al., 2009). Moreover, Renno et al. (2006) demonstrated that the association of bisphosphonate and laser can also increase the trabecular bone volume in vertebral in the osteopenic control group. It would be useful to know whether, and to what extent, the association between Biosilicate and laser therapy is able to improve bone repair in osteoporotic rats, particularly because there are no previous reports. In this context, the aim of this study was to investigate the effects of Biosilicate and laser therapy on bone fracture consolidation in osteoporotic rats.

2. Material and methods

This study was conducted in accordance with the Guide for Care and Use of Laboratory Animals and approved by the Animal Ethics Committee of the Federal University of São Carlos (08/2098). The animals were maintained at 19–23 °C on a 12: 12 h light–dark cycle in the Animal Experimentation Laboratory of the Federal University of São Carlos. They were housed in plastic cages and had free access to water and standard food.

A total of forty female Wistar rats (age 12 weeks, weight ±250 g) were submitted to ovariectomy (OVX) to induce osteopenia. This model is widely used as an experimental model of animal osteopenia and it is known to significantly decrease bone mass 8 weeks post-surgery (Kalu, 1991). Surgery was performed via bilateral translumbar incisions, under ketamine/xilazine anaesthesia (80/10 mg/kg). The uterine tubes were ligated (catgut, 4.0) and after removal of the ovaries the incisions were closed (catgut, 3.0). Eight weeks after the OVX, the animals were randomly divided into four groups of 10 animals each: a control bone defect group (CG) – the bone defects without any fillers; a Biosilicate group (BG) – the bone defects filled with Biosilicate; a Biosilicate group irradiated with LLLT at 60 J/cm² (BG60); and a Biosilicate group irradiated with LLLT at 120 J/cm² (BG120).

Bone defects were surgically performed on both tibias. The defect depth was guided until the rupture of cortical bone. The animals were anaesthetized with ketamine/xilazine (80/10 mg/g) and the mid-regions of the tibias were shaved and disinfected with povidone iodine. A dermo-periosteal incision was performed to expose the tibia. A 2 mm diameter cavity defect was made, using a spherical bur under copious irrigation with saline solution. In the Biosilicate-treated animals, the cavities were carefully filled with the corresponding biomaterial. The cutaneous flap was replaced and sutured with resorbable polyglaclcin, and the skin was disinfected with povidone iodine. The health status of the rats was monitored daily.

2.1. Biomaterial

High-purity silica and reagent-grade calcium carbonate, sodium carbonate and sodium phosphate were used to obtain the Biosilicate® parent glass. The chemicals were weighed and mixed for 30 min in a polyethylene bottle. Premixed batches were melted in a platinum crucible at a temperature range of 1250–1380 °C for 3 h in an electric furnace (Rapid Temp 1710 BL, CM Furnaces Inc., Bloomfield, NJ, USA) at the Vitreous Materials Laboratory of the Federal University of São Carlos (São Carlos,...

Copyright © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/term
2.2. Low level laser therapy

A low-energy GaAlAs (Teralaser, DMC® São Carlos, SP, Brazil), 830 nm CW, 0.6 mm beam diameter, 100 W/cm², at 60 and 120 J/cm², with irradiation times of 17 and 34 s, were used in this study. Laser irradiation was initiated immediately after the osteotomy procedure and it was performed on days 2, 4, 6, 8, 10 and 12 post-surgery. On day 14 post-osteotomy, the rats were sacrificed with an intraperitoneal injection of general anaesthetic. The tibias were defleshed and the soft tissues were removed for analysis.

2.3. Histopathological analysis

For the histopathological analysis, the right tibiae were removed and fixed in 10% buffer formalin (Merck, Darmstadt, Germany) for 48 h, decalcified in 4% EDTA (Merck) and embedded in paraffin blocks. 5 μm serial sections were cut and stained with haematoxylin and eosin (H&E Merck).

Histopathological evaluation was performed under a light microscope (Olympus, Optical Co. Ltd, Tokyo, Japan). Any changes in the bone defects, such as the presence of woven bone, medullar tissue, inflammatory process, granulation tissue or even tissues undergoing hyperplastic, metaplastic and/or dysplastic transformation, were investigated for each animal.

2.4. Immunohistochemistry

Paraffin was removed with xylene from serial sections of 4 μm and the sections were rehydrated in a graded series of ethanol, then pretreated in a microwave with 0.01 M citric acid buffer, pH 6, for three cycles of 5 min each at 850 W for antigen retrieval. The material was pre-incubated with 0.3% hydrogen peroxide in phosphate-buffered saline (PBS) solution for 5 min for inactivation of endogenous peroxidase, and then blocked with 5% normal goat serum in PBS solution for 10 min. The specimens were then incubated with anti-Runx2 polyclonal primary antibody (Santa Cruz Biotechnology, USA) at a concentration of 1:200, anti-COX-2 polyclonal primary antibody (Santa Cruz Biotechnology) or anti-VEGF-2 monoclonal primary antibody (Santa Cruz Biotechnology) at a concentration of 1:200. Incubation was carried out overnight at 4°C within the refrigerator. This was followed by two washes in PBS for 10 min. The sections were then incubated with biotin-conjugated secondary antibody anti-rabbit IgG (Vector Laboratories, Burlingame, CA, USA) at a concentration of 1:200 in PBS for 1 h. The sections were washed twice with PBS, followed by the application of preformed avidin–biotin complex conjugated to peroxidase (Vector Laboratories) for 45 min. The bound complexes were visualized by the application of a 0.05% solution of 3,3’-diaminobenzidine solution and counterstained with Harris haematoxylin. For control studies of the antibodies, the serial sections were treated with rabbit IgG (Vector Laboratories) at a concentration of 1:200 in place of the primary antibody. Additionally, internal positive controls were performed with each staining batch.

2.5. Morphometric assessment

The morphometry of the area of newly formed bone in the regions of bone repair previously indentified in the histopathological observation for each animal was measured in a blind fashion by an experienced pathologist, using image analysis system Moticon 5.0. Sections stained with Masson trichrome were observed; three areas of the cortical region of the defect were selected and named C1, C2 and C3, corresponding to the superior, inferior and central cortical areas of the defect. The neoformed bone tissue presented in these regions was measured and the area registered at a magnification of ×10. After the registration, the areas were added, resulting in the total bone area of the defect. This analysis was established in a previous study conducted by our team (Matsumoto et al., 2009).

2.6. Picrosirius polarization method

Histological sections stained by the Picrosirius polarization method were viewed under polarized light (Garavello-Freitas et al., 2009) to assess the structural changes in the neoforming trabecular matrix. This method allows an indirect evaluation of the stage of bone matrix organization, based on the birefringence of the collagen fibre bundles after staining with Picrosirius.

2.7. Biomechanical analysis

Biomechanical properties of the left tibia were determined by a three-point bending test with a 1 kN load ()
USA, 4444 model, 1 KN load cell). Tibiae were placed on a 3.8 cm metal device, which provided a 1.8 cm distance between the two supports. The load cell was perpendicularly positioned in the anterior–posterior direction at the exact site of the bone defect. A 5 N preload was applied in order to avoid specimen sliding. Finally, the bending force was applied at a constant deformation rate of 0.5 cm/min until fracture occurred. Thus, the maximum load (N) was obtained.

2.8. Statistical analysis

The normality of all variables' distribution was verified using Shapiro–Wilk's W test. For the variable that exhibited Normal distribution, comparisons among the groups were made using one-way analysis of variance (ANOVA), complemented by Tukey HSD post-test analysis. The Kruskal–Wallis test was performed for morphometric assessment. STATISTICA version 7.0 (data analysis software system, StatSoft Inc.) was used to carry out the statistical analyses. \(p < 0.05 \) was considered statistically significant.

3. Results

3.1. General findings

Neither postoperative complications nor behavioural changes were observed in the animals. None of the animals died during the experiment and no infection at the surgical site was observed.

3.2. Histopathological analysis

Regarding the control group, all the defects were composed by woven bone inside the bone defect after 14 days (Figure 1A). Additionally, the defects were filled by medullar tissue and some bone fragments, possibly due to the surgical procedures (Figure 1A). No inflammatory process was noticed in any of the specimens of this group, because no acute inflammatory cells were present. In specimens treated with Biosilicate, the bone defect was predominantly filled with the biomaterial. No woven bone was noticed in the majority of specimens for this group (Figure 1B). In addition, granulation tissue was present in circumjacent areas to the wall of bone defect. Regarding the 60 J/cm² laser and Biosilicate group, we observed the presence of the biomaterial filling all bone defects, associated with the presence of woven bone and granulation tissue (Figure 1C). In the group exposed to laser 120 J/cm² and Biosilicate, a more pronounced effect was evidenced, in which woven bone was in apposition to the surface of the biomaterial in the majority of cases; granulation tissue was present as well (Figure 1D). Overall, our results indicate, by means of subjective morphological analysis, that laser therapy improves the bone repair process in contact with Biosilicate in osteoporotic rats, particularly exposure to the 120 J/cm² laser at 14 days after surgery.

3.3. Immunohistochemistry

COX-2 expression was detected predominantly in the cytoplasm. After 14 days of the surgery, COX-2 immunoreactivity could be seen in medullar tissue for the control
Effect of Biosilicate® and laser therapy in osteoporotic rats

Figure 2. Immunohistochemistry for COX-2. (A) Immunooexpression predominantly in the medullar tissue in the control group (arrow). (B) In group treated with Biosilicate, immunopositive cells were detected in contact with biomaterial (arrow); (C and D) in groups treated with laser, a strong immunooexpression was noticed to circumjacent cells or granulation tissue (arrow) at 14 days (B) after surgery. Immunohistochemistry stain; bar = 30 µm

(1) In the group exposed to Biosilicate, COX-2 immunooexpression was seen in cells circumjacent to the biomaterial with a weak pattern (Figure 2B). Interestingly, LLLT, either 60 or 120 J/cm², was able to increase COX-2 expression in the circumjacent tissue of the biomaterial as well as granulation tissue (Figure 2C, D).

(2) Regarding Cbfa-1 immunohistochemistry, this could be detected in cells from medullar tissue in the control group (Figure 3A). Biosilicate-treated groups displayed expressivity for this immunomarker in areas circumjacent to the biomaterial (Figure 3B). In the groups treated with laser, either 60 or 120 J/cm², a similar pattern occurred, i.e. Cbfa-1 positive cells were noticed near to the Biosilicate and in the walls of the bone defect (Figure 3C, D, respectively).

(3) VEGF expression was predominantly detected in cells from capillary walls, which are composed of endothelial cells; 14 days after surgery, VEGF immunoreactivity could be seen in the capillary walls for the control group.

Figure 3. Immunohistochemistry for Cbfa-1. (A) Immunooexpression predominantly in the medullar tissue in the control group (arrow). (B) In group treated with Biosilicate, immunopositive cells were detected in contact with biomaterial (arrow). (C, D) The same picture occurred, i.e. positive cells were detected circumjacent to biomaterial (arrow) (C). Immunohistochemistry stain; bar = 30 µm

Copyright © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/term
In the group exposed to Biosilicate, VEGF immunoexpressivity was seen in some capillaries present in the areas circumjacent to the biomaterial (Figure 4B). In groups treated with laser + Biosilicate, either 60 or 120 J/cm², a similar pattern occurred, i.e. VEGF-positive cells were noticed in the capillary walls of the bone defect (Figures 4C).

3.4. Morphometry

The area of neoformed bone tissue presented by the Biosilicate group was significantly smaller than in the other groups (Figure 5). No difference was found between the bone defect control group and the Biosilicate group treated with laser at 60 J/cm². Interestingly, the animals treated with Biosilicate and exposure to laser at 120 J/cm² showed a statistically significant increase in the area of neoformed bone, corroborating the qualitative analysis.

3.5. Collagen assessment by Picrosirius

Figure 6 demonstrates the qualitative analysis for the collagen evaluation. It can be observed that the animals treated with Biosilicate only showed a smaller amount of collagen fibre deposition when compared to control group. Moreover, it seems that the animals exposed to laser therapy demonstrated a larger amount of collagen fibres when compared to the control. These findings corroborate those of the quantitative analysis of the collagen deposition. Figure 6 shows that the intensity of pixels demonstrated by the Biosilicate group was lower when compared to other groups. The groups treated with Biosilicate and irradiated with laser therapy showed a higher intensity of pixels, mainly at the dosage of 120 J/cm², indicating that these animals showed a higher amount of collagen fibre deposition (Figure 6).
4. Discussion

Biological supplementation of traditional strategies needs to be exploited for osteoporotic and geriatric patients with poor bone density and compromised bone repair potential (Hollinger et al., 2008). Recently, many treatments have been proposed, such as ceramics, osteogenic bioglasses and laser therapy for recalcitrant tibial non-unions (Peter et al., 2006). In this context, the aim of this study was to evaluate whether concomitant administration of Biosilicate and LLLT are able to improve bone repair in osteoporotic rats. To the best of our knowledge, the approach has not been addressed previously.

Our results showed that, although the animals treated with Biosilicate presented smaller amounts of neoformed tissue, biomechanical properties and a lower amount of collagen, the qualitative histological analysis showed that, in most of the specimens of this group, the presence of woven bone in apposition to the surface of the biomaterial could be observed. This finding supports the principle of bioactive glasses or glass–ceramics, which is considered to be a rapid deposition of a layer of hydroxyapatite (HCA) on the surface of the silica gel, as a result of exchange between calcium and silica ions when bioactive glass comes into contact with living tissues (Hench and Polak, 2002). Entirely inorganic reactions, previously described by Hench and Polak (2002), lead to rapid growth of HCA bone mineral on the glass surface and to a rapid proliferation of new bone within a bone defect site, a process termed osteoproduction. It may be that the short time post-surgery used to perform the analysis was not enough to produce a proper interaction of the biomaterial isolated with bone metabolism, which avoids better responses. Probably if we extended the time of the experimental design, we could reach more positive responses. Despite these results, the osteogenic potential of Biosilicate needs to be highlighted.

This in vivo finding corroborates previous in vitro results (Moura et al., 2007) which showed that, although Biosilicate and Bioglass 45S5 discs supported osteogenesis, significantly larger areas of calcified matrix were detected for the fully-crystallized glass–ceramic (Biosilicate) after 17 days in an osteogenic culture system. Also, in an in vivo study, we showed that the Biosilicate was efficient to induce bone formation and to increase the biomechanical properties of the fracture callus, 20 days after the surgery, to induce tibial bone defects (Granito et al., 2009). It is worth noting that the special nucleation and growth thermal treatments developed by our research group to improve the mechanical properties of glasses were also useful for obtaining a fully crystallized glass–ceramic (Biosilicate) with the high bioactivity level and osteoproductive properties exhibited by glasses.

Interestingly, the group exposed to laser therapy (mainly at 120 J/cm²) and Biosilicate showed a higher amount of newly formed bone when compared to the control, in which woven bone was in apposition to the surface of the biomaterial in the majority of cases. LLLT is a promising non-invasive method for stimulating osteogenesis and reducing the time of fracture consolidation through bioenergetic, biochemical and biostimulatory effects on cells (Nicolau et al., 2003; da Silva et al., 2006; Ribeiro et al., 2008). Kazem Shakouri et al. (2010) showed that the use of laser therapy could enhance callus development in the early stage of the healing process in rabbits, with doubtful improvement in biomechanical properties of the healing bone; therefore, laser therapy may be recommended as an additional treatment in non-union fractures in humans. Also, LLLT has been demonstrated to stimulate fracture bone healing in osteoporotic rats (Renno et al., 2006).

Accumulating evidence suggests that inflammation plays an important role in connective tissue repair (Simon et al., 2002). Specifically, cyclo-oxygenase (COX) is the rate-limiting enzyme in the conversion of arachidonic acid to prostaglandins, of which two isoforms, COX-1 and -2, have been identified during the inflammatory process. COX-1 is constitutively expressed in many tissues and mediates the synthesis of prostaglandins required for normal physiological function. COX-2 is normally undetectable in most tissues, but is rapidly induced by proinflammatory or mitogenic stimuli (Kargman et al., 1996). As demonstrated by Zhang et al. (2002), COX-2 enzyme acts on osteoblastogenesis, regulating osteoblastic differentiation genes such as Osterix and Cbfa1. In this study we were able to evaluate COX-2 expression in this setting. Our results revealed that laser therapy promotes an upregulation of COX-2 expression, even when combined with Biosilicate, in osteoporotic rats. Since LLLT is able to increase DNA and RNA synthesis formation in the cell nucleus and consequently to increase...
cell proliferation and differentiation, we believe that the immunoeexpression of COX-2 found in bone tissue could also be helpful for bone repair. This expectation was confirmed in previous studies investigating the role of COX-2 during bone repair in rats (Ribeiro et al., 2008). In 1997, Sato et al. (1997) suggested that COX-2 could be involved in the early stage of osteogenesis, probably associated with the maturation of osteoblasts. Moreover, it has been postulated that bone cells are able to produce COX-2 after mechanical trauma (Li et al., 2002), therefore being important to bone formation (Forwood, 1996). Our results agree with these previous studies.

To further elucidate the putative mechanisms of action involving Biosilicate and LLLT on bone repair in osteoporotic rats, we designed additional immunohistochemical experiments to observe the expression of Cbfal/RUNX2 (core binding factor protein-1), since some authors have assumed that COX-2 enzyme acts on osteoblastogenesis, regulating osteoblastic differentiation genes such as Cbfal and osteitx (Zhang et al., 2002). Interestingly, our results demonstrated a moderate Cbfal/RUNX2 expression in groups exposed to the biomaterial in combination or not with laser therapy. Taken as a whole, it seems that Biosilicate permits osteoblast differentiation during the process of bone repair in osteoporotic rats.

Accumulating evidence also suggests that neovascularization plays a crucial role in treating many diseases (e.g. coronary artery disease) and in virtually all approaches to tissue engineering (Boontheekul and Mooney, 2003). A lack of vascularization leads to insufficient nutrient delivery and waste removal, cell death and limited tissue development and tissue loss. Angiogenesis, new blood vessel formation by sprouting from the sides and ends of pre-existing microvascular vessels, has been widely studied to determine the rules guiding blood vessel formation in adult tissues (Boontheekul and Mooney, 2003). Numerous growth factors have so far been identified as regulators of this process. For example, vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis, as it is a potent mitogen for endothelial cells (ECs) and induces EC migration by upregulation of several endothelial integrin receptors. The VEGFs and their corresponding receptors are key regulators in a cascade of molecular and cellular events that ultimately lead to the development of the vascular system by angiogenesis (Ferrara et al., 2003).

In the present study we were able to evaluate the VEGF expression in this setting. Our results revealed that Biosilicate was able to induce angiogenesis, as depicted by the positive immunoeexpression found in this group. By comparison, Sojo et al. (2005) assumed that angiogenesis occurs predominantly before the onset of osteogenesis in bone lengthening in an osteodistraction model. These results are in line with our results, since positive angiogenesis was detected in early phases of bone repair after exposure to Biosilicate. Moreover, LLLT, either 60 or 120 J/cm², induced angiogenesis in a similar manner to the group exposed to Biosilicate only. The approach is new in the literature, and the results are difficult to discuss.

Independent of its mechanism the action, we believe that the immunoeexpression of VEGF found in these groups could also be helpful to bone repair in osteoporotic rats.

The Picrosirisus polarization method showed that the association of Biosilicate and LLLT, mainly at a higher dosage, produced a higher concentration of collagen fibres and a better organization of the fibres, which can be attributed to the laser stimulation. Garavello-Freitas et al. (2009) also observed an increase of collagen deposition in bone defects irradiated with LLLT. The bifringent shades of yellow to red bands observed by these authors in the irradiated animals is indicative of type I collagen-containing collagen fibres areas of trabecular bone, which are typical of mature bone, and acquired a mature disposition in newly-formed bone matrix.

Moreover, the most used preclinical animal model used for osteoporosis research is the ovariectomized rat. This model mimics bone loss and compromised fracture repair prevalent in postmenopausal women who are oestrogen-deficient and prone to osteoporotic fractures; consequently, ovariectomized rats were used to determine the fracture-healing efficacy of the treatments LLLT and Biosilicate (Hollinger et al., 2003).

5. Conclusion

In summary, our findings indicate that LLLT laser therapy improves bone healing in tibial defects of osteoporotic rats (as a result of an upregulation of COX-2 expression in bone cells), even when associated with Biosilicate. Also, it is likely that Biosilicate induces osteoblastic differentiation following bone repair. These findings should be carefully addressed to elderly people suffering from osteoporosis and presenting trauma of the tibia, since they represent a new perspective for osteoporotic patients, although they do not solve the problem of general osteoporosis. Further studies would be welcome to elucidate this issue.

References

Copyright © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/term
Effect of Biosilicate® and laser therapy in osteoporotic rats

1 and bone matrix organization during tibia wound healing in rats. 1
3 regeneration with injectable calcium phosphate biomaterial: a 1
4 three-dimensional micro-computed tomographic, biomechanical 1
6 Granito RN, Ribeiro DA, Renno AC, et al. 2009; Effects of biosilicate 1
7 and bioglass 45S5 on tibial bone consolidation on rats: a 1
8 biomechanical and a histological study. J Mater Sci Mater Med 1
10 Hench LL, Polak JM. 2002; Third-generation biomaterials. 1
12 Hollinger JO, Onikepo AO, MacKrell J, et al. 2008; Accelerated 1
13 fracture healing in the geriatric, osteoporotic rat with recombinant 1
14 human platelet-derived growth factor-BB and an injectable 1
16 Hollinger JO, Onikepo AO, MacKrell J, et al. 2008; Accelerated 1
17 fracture healing in the geriatric, osteoporotic rat with recombinant 1
18 human platelet-derived growth factor-BB and an injectable 1
20 Kaku DN. 1991; The ovariectomized rat model of postmenopausal 1
22 Kargman S, Charleson S, Cartwright M, et al. 1996; Characterization 1
23 of prostaglandin G/H synthase 1 and 2 in rat, dog, 1
24 monkey, and human gastrointestinal tracts. Gastroenterology 111: 1
25 1
26 Kazem Shakouri S, Soleimani J, Salekzamani Y, et al. 2010; Effect 1
27 of low-level laser therapy on the fracture healing process. 1
29 Kato T, Shiga T, Hashimoto J, et al. 1999; Osteoporosis influences 1
30 the late period of fracture healing in a rat model prepared by 1
32 197–202.
33 Li J, Burr DB, Turner CH. 2002; Suppression of prostaglandin 1
34 synthesis with NS-398 has different effects on endocortical and 1
35 periosteal bone formation induced by mechanical loading. Calcif 1
37 Lu HH, Vo JM, Chin HS, et al. 2008; Controlled delivery of platelet- 1
38 rich plasma-derived growth factors for bone formation. J Biomed 1
40 Luger EJ, Rockkind S, Wollman Y, et al. 1998; Effect of low-power 1
41 laser irradiation on the mechanical properties of bone fracture 1
43 Matsumoto MA, Ferino RP, Monte Leone GF, et al. 2009; Low-level 1
44 laser therapy modulates cyclo-oxygenase-2 expression during bone 1
46 Meyer RA Jr, Tshahkis PJ, Martin DF, et al. 2001; Age and 1
47 ovariecctomy impair both the normalization of mechanical 1
48 properties and the accretion of mineral by the fracture callus 1
50 Moura J, Teixeira LN, Ravagnani C, et al. 2007; In vitro osteogenesis 1
51 on a highly bioactive glass-ceramic (Biosilicate®). J Biomed Mater 1
53 Nicolau RA, Jorgetti V, Rigau J, et al. 2003; Effect of low-power 1
54 GaAlAs laser (600 nm) on bone structure and cell activity: an 1
56 Oliveira MS, Lima M, Severino D, et al. 2007; Quenching of singlet 1
57 molecular oxygen, O2 (1Deltag), by dipyr-idamole and derivatives. 1
59 Otawa Y, Shimizu N, Kariya G, et al. 1998; Low-energy laser 1
60 irradiation stimulates bone nodule formation at early stages of 1
62 Peter B, Gauthier O, Laib S, et al. 2006; Local delivery of 1
63 bisphosphonate from coated orthopedic implants increases implants 1
65 Renno AC, McDonnell PA, Crovace MC, et al. 2010; Effect of 830 nm 1
66 laser phototherapy on osteoblasts grown in vitro on Biosilicate® 1
68 Renno ACM, de Moura FM, dos Santos NS, et al. 2006; Effects of 830 nm 1
69 laser, used in two doses, on biomechanical properties of 1
71 Renno ACM, McDoNneell PA, Parizotto NA, et al. 2007; The effects 1
72 of laser irradiation on osteoblast and osteosarcoma cell 1
73 proliferation and differentiation in vitro. Photomed Laser Surg 25: 1
74 275–280.
75 Ribeiro DA, Matsumoto MA. 2008; Low-level laser therapy improves 1
76 bone repair in rats treated with anti-inflammatory drugs. J Oral 1
77 1
79 genes and involvement of endogenous prostaglandin during 1
80 osteogenesis in the rat tibial bone marrow cavity. J Med Dent 1
82 Simon AM, Manigrasso MB, O’Connor JP. 2002; Cyclo-oxide 2 1
83 function is essential for bone fracture healing. J Bone Miner Res 1
84 17: 963–976.
86 study of vascular endothelial growth factor (VEGF) and bone 1
87 morphogenetic protein-2, -4 (BMP-2, -4) on lengthened rat femurs. 1
89 Stein A, Benayahu D, Maltz L, et al. 2005; Low-level laser irradiation 1
90 promotes proliferation and differentiation of human osteoblasts 1
95 Treilles MA, Mayayo E. 1987; Bone fracture consolidates faster with 1
97 Vogell M, Voigt T, Gross U, et al. 2001; In vivo comparison of 1

Copyright © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/term
QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT mark your corrections on this query sheet.

Queries from the Copyeditor:

AQ1 Figure(s) 1 to 7 are of low clarity. Kindly provide better replacement figure(s) or confirm if we may use the existing one(s).

AQ2 What does “G2” mean here? Not mentioned anywhere else in paper. Please clarify/amend

AQ3 Section thickness stated here as 4 µm, but in previous paragraph they were stated to be 5 µm. Please amend

AQ4 Is there a supplier’s name missing here? It’s not informative to state “USA” only.
WILEY AUTHOR DISCOUNT CLUB

We would like to show our appreciation to you, a highly valued contributor to Wiley’s publications, by offering a unique 25% discount off the published price of any of our books*.

All you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group (Author Club)
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
PO19 8SQ
UK

Alternatively, you can register online at www.wileyeurope.com/go/authordiscount

Please pass on details of this offer to any co-authors or fellow contributors.

After registering you will receive your Wiley Author Discount Card with a special promotion code, which you will need to quote whenever you order books direct from us.

The quickest way to order your books from us is via our European website at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:
- Real-time SECURE on-line ordering
- Easy catalogue browsing
- Dedicated Author resource centre
- Opportunity to sign up for subject-orientated e-mail alerts

Alternatively, you can order direct through Customer Services at:
cs-books@wiley.co.uk, or call +44 (0)1243 843294, fax +44 (0)1243 843303

So take advantage of this great offer and return your completed form today.

Yours sincerely,

Verity Leaver
Group Marketing Manager
author@wiley.co.uk

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
To enjoy your 25% discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Area</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>• Public</td>
<td></td>
</tr>
<tr>
<td>• Corporate</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>• Analytical</td>
<td></td>
</tr>
<tr>
<td>• Industrial/Safety</td>
<td></td>
</tr>
<tr>
<td>• Organic</td>
<td></td>
</tr>
<tr>
<td>• Inorganic</td>
<td></td>
</tr>
<tr>
<td>• Polymer</td>
<td></td>
</tr>
<tr>
<td>• Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Encyclopedia/Reference</td>
<td></td>
</tr>
<tr>
<td>• Business/Finance</td>
<td></td>
</tr>
<tr>
<td>• Life Sciences</td>
<td></td>
</tr>
<tr>
<td>• Medical Sciences</td>
<td></td>
</tr>
<tr>
<td>• Physical Sciences</td>
<td></td>
</tr>
<tr>
<td>• Technology</td>
<td></td>
</tr>
<tr>
<td>Earth & Environmental Science</td>
<td>[]</td>
</tr>
<tr>
<td>Hospitality</td>
<td>[]</td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>• Bioinformatics/Computational Biology</td>
<td></td>
</tr>
<tr>
<td>• Proteomics</td>
<td></td>
</tr>
<tr>
<td>• Genomics</td>
<td></td>
</tr>
<tr>
<td>• Gene Mapping</td>
<td></td>
</tr>
<tr>
<td>• Clinical Genetics</td>
<td></td>
</tr>
<tr>
<td>Medical Science</td>
<td></td>
</tr>
<tr>
<td>• Cardiovascular</td>
<td></td>
</tr>
<tr>
<td>• Diabetes</td>
<td></td>
</tr>
<tr>
<td>• Endocrinology</td>
<td></td>
</tr>
<tr>
<td>• Imaging</td>
<td></td>
</tr>
<tr>
<td>• Obstetrics/Gynaecology</td>
<td></td>
</tr>
<tr>
<td>• Oncology</td>
<td></td>
</tr>
<tr>
<td>• Pharmacology</td>
<td></td>
</tr>
<tr>
<td>• Psychiatry</td>
<td></td>
</tr>
<tr>
<td>Non-Profit</td>
<td>[]</td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Business/Management</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td>• Database/Data Warehouse</td>
<td>[]</td>
</tr>
<tr>
<td>• Internet Business</td>
<td>[]</td>
</tr>
<tr>
<td>• Networking</td>
<td>[]</td>
</tr>
<tr>
<td>• Programming/Software</td>
<td></td>
</tr>
<tr>
<td>• Development</td>
<td></td>
</tr>
<tr>
<td>• Object Technology</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>• Civil</td>
<td></td>
</tr>
<tr>
<td>• Communications Technology</td>
<td>[]</td>
</tr>
<tr>
<td>• Electronic</td>
<td></td>
</tr>
<tr>
<td>• Environmental</td>
<td></td>
</tr>
<tr>
<td>• Industrial</td>
<td></td>
</tr>
<tr>
<td>• Mechanical</td>
<td></td>
</tr>
<tr>
<td>Finance/Investing</td>
<td></td>
</tr>
<tr>
<td>• Economics</td>
<td></td>
</tr>
<tr>
<td>• Institutional</td>
<td></td>
</tr>
<tr>
<td>• Personal Finance</td>
<td></td>
</tr>
<tr>
<td>Life Science</td>
<td></td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Materials Science</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
</tr>
<tr>
<td>• Clinical</td>
<td></td>
</tr>
<tr>
<td>• Forensic</td>
<td></td>
</tr>
<tr>
<td>• Social & Personality</td>
<td></td>
</tr>
<tr>
<td>• Health & Sport</td>
<td></td>
</tr>
<tr>
<td>• Cognitive</td>
<td></td>
</tr>
<tr>
<td>• Organizational</td>
<td></td>
</tr>
<tr>
<td>• Developmental & Special Ed</td>
<td></td>
</tr>
<tr>
<td>• Child Welfare</td>
<td></td>
</tr>
<tr>
<td>• Self-Help</td>
<td></td>
</tr>
<tr>
<td>Physics/Physical Science</td>
<td></td>
</tr>
</tbody>
</table>
I confirm that I am (*delete where not applicable):

a **Wiley** Book Author/Editor/Contributor* of the following book(s):

ISBN:
ISBN:

a **Wiley** Journal Editor/Contributor/Editorial Board Member* of the following journal(s):

SIGNATURE: …………………………………………………………………………………… **Date:** ………………………………………

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE: (e.g. Mr, Mrs, Dr) ………………… **FULL NAME:** ……………………………………………………………………………………

JOB TITLE (or Occupation): ……

DEPARTMENT: ………..

COMPANY/INSTITUTION: ………

ADDRESS: ………

……

TOWN/CITY: ………

COUNTY/STATE: ……

COUNTRY: ……

POSTCODE/ZIP CODE: ………

DAYTIME TEL: ……

FAX: ………

E-MAIL: ………

YOUR PERSONAL DATA

We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.

 [] Please tick the box if you do **NOT** wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post with details of titles and offers that may be of interest to you.

 [] Please tick the box if you do **NOT** wish to receive this information.

E-MAIL ALERTING SERVICE

We also offer an alerting service to our author base via e-mail, with regular special offers and competitions. If you **DO** wish to receive these, please opt in by ticking the box [].

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK.

TERMS & CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

PLEASE RETURN THIS FORM TO:

Database Group (Author Club), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK author@wiley.co.uk

Fax: +44 (0)1243 770154