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FULL CRITICAL REVIEW

Model-driven design of bioactive glasses: from molecular dynamics through
machine learning
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ABSTRACT
Research in bioactive glasses (BGs) has traditionally been performed through trial-and-error
experimentation. However, several modelling techniques will accelerate the discovery of new
BGs as part of the ongoing endeavour to ‘decode the glass genome.’ Here, we critically
review recent publications applying molecular dynamics simulations, machine learning
approaches, and other modelling techniques for understanding BGs. We argue that
modelling should be utilised more frequently in the design of BGs to achieve properties such
as high bioactivity, high fracture strength and toughness, low density, and controlled
morphology. Another challenge is modelling the biological response to biomaterials, such as
their ability to foster protein adsorption, cell adhesion, cell proliferation, osteogenesis,
angiogenesis, and bactericidal effects. The development of databases integrated with robust
computational tools will be indispensable to these efforts. Future challenges are thus
envisaged in which the compositional design, synthesis, characterisation, and application of
BGs can be greatly accelerated by computational modelling.
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Introduction

Theoretical and computational modelling are becom-
ing ubiquitous in materials research. Modelling can
assist greatly in reducing the timescales required for
the translation of basic research into advanced
materials and manufacturing [1]. Different govern-
mental initiatives have been launched aiming to
improve current modelling capabilities and increase
industrial competitiveness [2]. For example, in 2011,
U.S. President Barack Obama announced the Materials
Genome Initiative (MGI), promising a renaissance in
the development of new industrial materials. The
U.S. federal government invested over US $250 million
to coordinate research activities in materials science
and to accelerate the process of discovering new
materials for potential future commercialisation [3].
In this framework, different programmes initiated
synergetic collaboration among experimental and
theoretical materials scientists, data scientists, and
experts from adjacent fields. Glasses are among those
high-tech materials being targeted for new advances
following the materials genome approach.

Glass is defined as

a nonequilibrium, noncrystalline condensed state of
matter that exhibits a glass transition. The structure
of glasses is similar to that of their parent supercooled
liquids (SCL), and they spontaneously relax toward
the SCL state. Their ultimate fate, in the limit of
infinite time, is to crystallize. [4]

One of the most well-known diagrams in glass science,
the enthalpy versus temperature plot, is shown in
Figure 1. The different regions in the figure are: (i)
The thermodynamically stable liquid state above the
melting point or liquidus temperature, Tm. (ii) The
metastable supercooled liquid (SCL) state, which exists
between Tm and the glass transition temperature, Tg.
The SCL eventually crystallises (green arrows) after a
certain time. (iii) Glasses exist below the glass tran-
sition temperature, Tg. They are thermodynamically
unstable and spontaneously relax toward the super-
cooled liquid state at any non-zero temperature (grey
arrow in Figure 1). The glass transition takes place
around Tg, the temperature where the experimental
or observation time is similar to the average structural
relaxation time of the SCL. On the heating path, a glass
changes to a SCL at Tg. At any positive temperature,
above or below Tg, for sufficiently long times, any
SCL or glass relaxes and then eventually crystallises
(arrows in Figure 1). (iv) Crystals are true solids that
are thermodynamically stable below Tm with well-
ordered atomic structures at short, medium, and
long-range scales. We stress from the beginning that,
due to their crystal-free structure, glasses are particu-
larly amenable to several atomic-scale modelling tech-
niques, since many of their properties depend
primarily upon their chemical composition and not
microstructural effects. In other words, there are direct
composition-property relationships, and the key
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challenge is to find them [4,5]! And there are ‘zillions’ of
possible compositions to be explored. In a useful exer-
cise, Zanotto and Coutinho [6] estimated that 1052

glasses could be made by combining 80 friendly
elements of the periodic table in 1% molar steps.

Conventional empirical (or semi-empirical)
approaches for developing new materials and charac-
terising their properties are expensive and time-con-
suming. Recently, modelling is emerging as a
significant component of research in glass science,
inline with the MGI effort [7,8]. To achieve this goal,
it is necessary to utilise an extensive set of techniques,
from purely empirical, brute-force computer methods
(such as machine learning (ML)), to those incorporat-
ing detailed fundamental physics, such as molecular

dynamics (MD). Figure 2 provides an overview of var-
ious modelling and simulation methods for predicting
the properties of glassy materials. A variety of models
are available, from purely empirical models that rely
on the mathematical fitting of experimental data, to
ab initio methods built on a detailed description of
the material’s electronic structure. Classical molecular
dynamics (CMD) simulations have proven to be
especially helpful for understanding the atomic
structure, dynamic processes (diffusion, viscous flow,
relaxation, liquid-liquid phase separation, and crystal-
lisation) and several other properties of glasses [7,8].
While many of these modelling approaches are stan-
dard techniques that can be applied to any class of
material, other methods have been developed specifi-
cally for modelling disordered systems such as glasses.
For example, topological constraint theory (TCT) is an
approach that describes the connectivity of the disor-
dered glassy network, an especially useful technique
for use in the design of new glass compositions, since
accurate yet straightforward models can be derived
for a diverse range of properties [9]. Constraint-based
models for the temperature and composition depen-
dence of viscosity are already in routine use in industry.
While accurate models exist for a variety of properties,
liquidus temperature and crystallization behaviour
remain a very significant challenge that would benefit
from increased attention from academic research
groups [7–9].

The appropriate choice of modelling technique
depends on the nature of the system under study, the
desired properties to calculate, the availability of qual-
ity data, and the level of physical understanding gov-
erning the relevant structure-property relationships in

Figure 1. Schematic enthalpy versus temperature plot for
glass-forming materials showing four distinct states: liquid,
supercooled liquid, glass, and crystal. Tm =melting point or
liquidus temperature, Tg = glass transition temperature (repro-
duced with permission from Ref. [4]).

Figure 2. Decoding the ‘glass genome’ involves the use of a wide range of modelling tools, from empirical to theoretical
approaches that account for the detailed underlying physics and chemistry. Typically, the use of a combination of modelling
approaches considering different levels of physics can provide the most significant insights and accurate predictions (reproduced
with permission from Ref. [7]).
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that system. Often a combination of multiple model-
ling approaches that incorporates different levels of
physics can yield a more comprehensive picture of
any given property. Of course, all models need to be
validated by experiments, and they are often most
effective when developed in close collaboration with
experimentalists. Models incorporating a higher degree
of physical understanding are preferable for accurately
predicting properties outside of the compositional
ranges used for fitting and validation [1,8]. Through
a combination of different approaches, from atomistic
through empirical modelling, Mauro et al. [9] have
contributed to ‘decoding the glass genome’ and
efficiently designing the famous Gorilla® Glass, Corn-
ing’s thin, damage-resistant glass [9]. This product
has been used in several billion devices, including
smartphones, tablets, smartwatches, automotive glass,
and in interior architecture [10].

The importance and the huge impact of the discov-
ery of bioactive glasses (BGs) by Larry Hench [11] in
1969, including the chronology of scientific and tech-
nological advances, prospects and challenges for the
future, have been elaborated in many original and
review papers. We searched the Scopus database
using the words [‘bioactive and glass*’ or ‘bioglass’]
in the article title and found 105 review papers pub-
lished in the last 25 years, including 10 in 2018. They
discuss the compositions, properties, and applications
of BGs. Some diverse and unique capabilities of BGs,
reviewed in Refs. [12–39], include: bone-bonding abil-
ity [12–14], bone regeneration [15,16], regeneration of
soft tissues [17–22], angiogenesis property [23], bac-
tericidal effect [24], gene expression [25], therapeutic
ion release [26–28], drug delivery capability [29–32],
functionalisation, e.g. tough bioactive implants (e.g.
bio glass-ceramics) [33,34], coatings [35], composites
[36], hybrids [37], and cancer treatment [38,39].
Finally, in addition to several scientific journals dedi-
cated to biomaterials, there is even a dedicated period-
ical called Biomedical Glasses [40].

The bioactivity of a material is characterised by their
ability to stimulate a favourable response from the
body, which in BGs mainly relies on the controlled
release of soluble species, such as calcium, sodium,
phosphorus, silicon, and boron [12]. For example,
Figure 3 illustrates how the release of therapeutic
ions from a BG structure into the surrounding
environment is considered one of the main reasons
for its biological effects [41]. Several trace elements
have been successfully incorporated into glass struc-
tures for improving their therapeutic effects, including
osteogenesis, angiogenesis, bactericidal activity, and
anti-inflammation properties. The release profile of
the depicted ions in Figure 3 depends on various
parameters, such as glass composition, surface topogra-
phy, porosity, particle size and chemical environment.
The composition determines the chemical degradation

rate of the glass in a specific environment and, there-
fore, controls the ion release rate into the biological
environment [26,41]. As an example, it has been
proposed that the incorporation of certain ions, such
as silver (Ag+), zinc (Zn2+), copper (Cu+ and Cu2+),
cerium (Ce3+ and Ce4+), and gallium (Ga3+) into the
structure of BGs and their controlled release is a viable
strategy for inhibiting bacterial growth and reproduc-
tion [31,42].

In writing this review paper, we first surveyed
articles in which any type of modelling of BGs has
been addressed. To our surprise, we found that the
direct modelling of BG compositions was primarily
limited to MD simulations (Second Section), plus a
handful of publications on the application of ML-
based approaches and meta-analysis (Third Section).
This limited number of modelling studies of BGs is
not commensurate with the MGI programme and
with the expectations of the community. Therefore,
in Perspectives, we suggest some promising modelling
approaches such as TCT and artificial neural networks
(ANNs) for glass property characterisation and related
biological response. Finally, based on this review of
current modelling approaches, in Conclusions, we
offer a view to the future for glass and biomaterials
science, their successes, limitations, and challenges.

MD simulations

In glass science, the combination of laboratory exper-
iments and computer simulations can provide deeper,
microscopic physical insights into the structural details
and dynamic processes of vitreous materials for confi-
rming or refuting theories and understanding and pre-
dicting properties. In particular, atomistic simulations
have proved invaluable for determining the structure
of many glasses and glass-forming liquids [43,44].
Computational power has increased dramatically over
the past few decades, enabling researchers to simulate
larger and larger systems (up to roughly a billion par-
ticles) or over longer timescales (up to microseconds
for some systems). Also, a number of new simulation
techniques have allowed the calculation of many ther-
mal, mechanical, and kinetic properties of glass.
Indeed, modelling has proved essential for developing
a fundamental understanding of structure-property
relationships, and it promises to play an indispensable
role in the development of new glass compositions with
the desired combination of properties [8]. In this sec-
tion, we provide a critical overview of MD simulations
and offer some thoughts about the future of this
method for modelling of complex multicomponent
glasses, including BGs.

MD is the most commonly used method for per-
forming atomistic simulations of glasses, and BGs are
no exception. For example, MD simulations are used
to model glass water interaction, which is an important
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step in the biological activity of BGs, but the time scales
are generally too short to directly model dissolution
[45–47]. MD simulations of BGs were introduced in
the early 2000s. Such simulations directly can yield
an unbiased structural and dynamic picture of a glass,
which does not depend on the availability of additional
structural data, and its validity only relies on the quality
of the underlying force field. The simulations can be
classical (standard MD) or based on first principles
quantum mechanics (ab initio) methods [43–48].

Chronologically, classical MD modelling using
empirical force fields, such as the BKS, Pedone, Stillin-
ger, Rino-Vashista, or other potentials [48], is a power-
ful technique to capture the complex potential energy
landscape and resulting properties of single component
and binary amorphous materials and glasses [48].
However, this method has an intrinsic difficulty in

modelling multicomponent glasses, such as bioactive
compositions [49–51]. This difficulty is mainly associ-
ated with the character of mixed Si–O, P–O, and B–O
bonds, whose ionic/covalent balance depends on their
local environment, such as the composition and geo-
metry of the coordination of network-modifying
cations near the oxygens, and the bridging/non-brid-
ging nature of the neighbouring oxygen. Therefore,
other types of empirical potentials, e.g. via a shell-
model (SM) approach, where the atomic polarisability
is incorporated into the model by replacing polarisable
atoms with core-shell dipoles consisting of two oppo-
site charges, have been utilised. The SM design has
been successfully applied to model silicate glasses and
calcium phosphates. Results showed the improvement
mainly on revealing the medium-range structures, such
as Qn distribution. For a higher level of accuracy, ab

Figure 3. The controlled release of certain ions from the glass structure into the surrounding environment is considered as one of
the main reasons for the therapeutic effects of BGs, such as osteogenesis, angiogenesis, bactericidal activity and anti-inflammation
properties [41].
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initio MD (AIMD) has been used. In this method,
forces are calculated using quantum mechanical
methods. Such a first-principles approach is an excel-
lent way to incorporate detailed electronic effects in
the MD model; hence, AIMD has much broader appli-
cability than classical MD. However, due to the extre-
mely demanding calculations, only relatively small
systems (<1000 particles) can be modelled in a reason-
able timescale [49,51]. Therefore, the maximum afford-
able size and time scales of ab initio MD simulations
are far too small to observe the evolution of, e.g. sol–
gel synthesis of nano-sized bio-glasses and their reac-
tivity over relatively long time scales [52,53].

On the other hand, classical MD can simulate larger
system sizes and longer timescales, but most standard
force fields are not suitable for describing the rapidly
changing bonding configurations and charge distri-
butions of reactive processes. Glass dissolution typi-
cally happens at a sub-nanometer length scale, with
elementary dynamical events lasting a few picoseconds.
This is the timescale for attempting to jump over a
barrier, but with so many unsuccessful jumps, the
actual time scale of dissolution is much longer. Also,
the dissolution process involves chemical reactions,
which require different force fields. To address this
problem, MD simulations of the silica polymerisation,
for example, have employed ‘reactive’ force fields,
which were capable of realistically reproducing the
rupture and formation of covalent chemical bonds
during the course of the reactions, such as dissociation
of OH– and silanol groups in water, incorporation of
hydroxyls in the silica network and their condensation
to Si–O–Si bridges, and so forth. The application of
reactive force fields (such as ReaxFF) in MD simu-
lations of glasses is well demonstrated and has been
reviewed recently [52–56].

Other AIMD methods, such as the Car-Parrinello
molecular dynamics (CPMD) and Born–Oppenheimer
molecular dynamics (BOMD), have also enabled model-
ling of silicate glasses with higher accuracy, e.g. challen-
ging the difficult issues in modelling of surface reactivity
and dynamic processes in glasses. Glass scientists fre-
quently use classical MD with empirical potentials to
obtain an initial structure and then switch to ab initio
using the classical structure as ‘starting state.’ This
approach limits the investigation of short-range features
or properties that have mainly local (short-range) char-
acter. However, a full ab initio approach could solve the
latter two problems and provide a view of some dynami-
cal and structural features of multicomponent BGs.
Compared with the mixed classical/ab initio approach,
the full ab initio procedure demands significantly
more computational resources [49–51]. All in all, appro-
priate force fields are currently available that allow one
to access relatively large system sizes, on the order of
∼109 atoms for monoatomic systems and ∼106 atoms
for multicomponent with a high level of accuracy.

Models of these sizes, spanning lengths between two
and a few tens of nanometer, are necessary to extract
structural properties relevant, for example, for glass dis-
solution with a high statistical accuracy [50,51].

We should emphasise that this topic has been partly
reviewed in papers and book chapters by Tilocca
[50,51], Christie et al. [57], and Pedone and Menziani
[58]. They have highlighted that the physicochemical
behaviour of BGs in a physiological environment can
indeed be investigated using computer simulations.
Here, we elaborate on all relevant (old and new)
findings on this particular topic and discuss the chal-
lenges ahead. Up to now, MD simulations have been
employed to model nano bio-glasses, the structure,
ion migration in BGs, and to find descriptors of the
chemical degradation of BGs. In the following, we cri-
tically review those articles and point to relevant topics
that warrant further research.

Structure of BGs

The structure of the pioneering material, 45S5 Bio-
glass®, which is composed of Na2O–CaO–P2O5–SiO2,
has been simulated by Tilocca [59–61]. The modelled
structure (involving melt-quenched systems containing
∼103 atoms at cooling rates of 5–10 K ps–1) is domi-
nated by very short silicate chains containing 2 to 4
monomers (silicon-oxygen tetrahedra) corroborating
its low glass-forming ability and high solubility. The
modelled structure, besides statistical fluctuations, is
essentially unaffected by the cooling rate. Although
the simulation boxes were varied by a factor of 32,
the distributions of silicate chain lengths remained
almost constant. The only apparent effect of a smaller
box size was a slightly higher fraction of the smallest
(dimer and trimer) chain fragments [60–62]. This
finding conveyed the message that the medium-range
structural order of BGs, extracted from models of sili-
cate and phosphate glasses through conventional MD
simulations, are generally reliable. Therefore, the
CPU-demanding task to access larger sizes (N > 105

atoms) or slow cooling rate (<10−2 K ps–1) is, in most
cases, unnecessary [60,63].

Pedone et al. [64] then used an integrated compu-
tational method which couples CMD simulations
with periodic density functional theory (DFT) calcu-
lations to generate the theoretical solid-state NMR
spectra of 17O, 23Na, 29Si, and 31P isotopes when study-
ing 45S5 Bioglass®. Their results provided valuable
insights into several open questions regarding the
atomic-scale structural details of this glass. In particu-
lar, they showed that the host silica network, described
by the Qn distribution, consists of chains and rings of
Q2 (67.2%) SiO4 tetrahedra cross-linked with Q3

(22.3%) species, and terminated by a smaller quantity
of Q1 (10.1%) species. No Si–O–P bridges were
detected by either the 31P NMR or 17O NMR
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experiments. Isolated orthophosphate units can hence
form nano-domains with sodium and calcium cations
that diminish the role of these ions as modifiers in
the silicate network. The experimental and theoretical
results showed a mixture of Na and Ca cations sur-
rounding the non-bridging oxygens (NBOs) [64].

Stevensson et al. [65] also found through combined
NMR and MD simulations that the dispersion of
phosphate ions remains independent of the silicate
network polymerisation and is almost independent
of the P content of the glass in the compositional
space of 1–6 mol-% P2O5 and silicate network con-
nectivities up to 2.9, which represents the average
number of bridging oxygens per SiO4 tetrahedron.
These results disagree from the findings of Linati
et al. that detected a small amount of Si–O–P links
in glasses with low P2O5 content, and that at high
P2O5 concentration the Si–O–P bridges became
important [66]. Recently, Bhaskar et al. [67] have
addressed this issue by considering the effects of the
cooling rate used during the preparation of standard
45S5 Bioglass®. They used MD simulations and
NMR experiments to investigate the structure of the
glass synthesised using cooling rates ranging over sev-
eral orders of magnitude. The results from simu-
lations are in very good agreement with
experimental data, provided that they are extrapolated
toward lower cooling rates achieved in experiments.
Their findings highlight that previously reported
inconsistencies between simulations and experiments
stem from the huge differences in cooling rate,
thereby addressing one of the longstanding questions
on the structure of 45S5 BG, viz. the existence of Si–P
avoidance behaviour, which may be key in controlling
the bioactivity of this glass.

Recently, Lu et al. [68] prepared a series of B2O3-
substituted SiO2 in 45S5 BGs and performed in vitro
biomineralisation tests. Formation of hydroxyapatite
(HAp) was observed on the glass surfaces of all compo-
sitions after 3 weeks, but HAp formation on glasses
with higher boron oxide was slower. MD simulations
were employed to complement the experimental
findings to understand the structural changes due to
B2O3 to SiO2 substitution by using partial charge com-
position-dependent potentials. The overall network
connectivity of Si obtained from MD simulations
increased with increasing boron content: from 2.06
for 45S5 to 2.45 for a pure borate glass (Figure 4).
Therefore, this increase of network connectivity with
boron concentration is at least partially responsible
for the delayed HAp formation in vitro after inducing
boron in this glass [68].

Mead and Mountjoy [69] have reported on MD
simulations of the first detailed models of the local
atomic structure of gel-derived bioactive SiO2–CaO
glasses, with the composition of CaxSi1-xO2-x-y(OH)2y,
0≤ x≤ 0.5 and y = 0.2. The MD models were in

satisfactory agreement with experimental results and
showed the expected reduced network connectivity of
tetrahedral silica due to the presence of Ca and
hydroxyl groups. Ca ion coordination number (CN)
was ∼6 for a Ca mole fraction of x = 0.5, mostly located
near nonbridging oxygens, with a small contribution
from bridging oxygens. The hydroxyl groups bonded
to Si forming Si–O–H bonds, but there is also a sub-
stantial contribution to the Ca coordination from
hydroxyl groups, which reduced the amount of non-
bridging oxygens bonded to Si. The Ca distribution
for x = 0.5 was similar to that in melt-quenched
CaSiO3 glass obtained from neutron diffraction exper-
iments. For x around ∼0.1, clustering of Ca was
observed, greater than expected for a random distri-
bution. The role of hydroxyl groups in coordination
to Ca was supposed to enhance the dissolution of Ca
and bioactivity [69].

Malavasi et al. [70] derived a mathematical relation-
ship through a MD simulation that relates the Ca/P
ratio in heterogeneous Ca-phosphate domains to the
P2O5 content in ternary SiO2–CaO–P2O5 gel-glasses
for fine-tuning the optimum amount of P to achieve
the highest in vitro bioactivity. They found that the
composition with optimal Ca/P ratio is 80SiO2–
14.8CaO–5.2P2O5 (mol-%), and bioactivity tests have
confirmed their prediction [70]. This is indeed a very
relevant result towards predicting useful glass
properties.

More recently, Côté et al. [71] performed MD simu-
lations to investigate how calcium interacts with silica
during a sol–gel process, whose initial configuration
includes Si(OH)4 monomers that are formed from
the hydrolysis of the tetraethoxysilane (TEOS) precur-
sors, during sol–gel processing of BGs. For this pur-
pose, the atomistic evolutions of calcium-containing
and Ca-free bioactive gel-glasses were compared
using ReaxFF MD simulations. The ReaxFF class of
force fields has proven to be very successful in model-
ling the chemical reactivity of a wide range of systems,
rupture and formation of covalent chemical bonds in
the course of the sol–gel process. The simulation results
highlighted that calcium significantly accelerates the
rate of poly-condensation leading to the formation of
large, ramified silica clusters in 5 ns. It is believed
that Ca induces nano segregation in calcium-rich and
silica-rich regions and promotes the condensation
reactions. Hence, unveiling the mechanism behind
the incorporation of calcium in the early stages of the
sol–gel process could guide further studies aimed at
identifying complementary experimental conditions
to produce gel-derived biomaterials with enhanced
properties [71].

In addition to Na, Ca and P, whose structural roles in
45S5 and gel-derived SiO2–CaO–P2O5 glasses have been
revealed by solid-state NMR and MD simulations
[72,73], the structure of silicate/phosphate BGs
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containing other elements and water [74], which impose
important biological or structural changes, have been
extensively investigated by MD simulations and, in
some cases, compared to experimental data. These
elements include cerium [75,76], magnesium [77],
chlorine [78], fluorine [79–85], zinc [86–88], boron
[89–92], strontium [93–95], gallium and aluminium
[96], silver [97], copper [98,99], and lithium [100]. In
most cases, MD simulations confirmed experimental
observations of the structure determined by nuclear
magnetic resonance (NMR), neutron scattering, and
other types of experimental structural characterisation.
For example, Figure 5 shows the local structure around
cerium ions in cerium-doped bioactive phosphosilicate
and silicate glasses revealed by X-ray absorption fine
structure (XAFS) at the Ce K-edge, combined with
CMD simulations. Cerium ions (Ce3+ or Ce4+) are anti-
bacterial and antioxidant agents; small quantities favour
depolymerisation, dissolution and the antioxidant
activity in silicate glasses. Conversely, the formation of
cerium phosphate domains in phosphosilicate glasses
is detrimental for both the solubility and catalytic
activity [75,76].

Christie et al. [101], Côté et al. [102] and Eckert
[103] demonstrated the successful use of high-energy
X-ray and neutron scattering/diffraction methods,
NMR, combined with classical/ab initio/CPMD/reac-
tive MD simulations as components of a powerful
strategy for the study of BGs. Overall, the combination
of experimental and MD studies is very effective for
systematically investigating the relationship between
glass structure and bioactivity, as well as to understand
the structural origin of several other properties, such as
density, glass transition temperature, elastic modulus

and chemical durability of complex glass compositions.
This integrated approach can be highly valuable for
designing next-generation BGs. Finally, the biological
responses to ions released from BGs and their struc-
tural roles revealed by MD simulations and experimen-
tal methods are summarised in Table 1. However, fine-
tuning the dissolution rate of ion-doped BGs within the
therapeutic range is still an open and challenging issue.

Descriptors defining chemical degradation of
BGs

The key challenges in biodegradation related to glass
structure are the need to have experimental results cov-
ering the biodegradation of a broad range of suitable
compositions and the task of devising structural
descriptors by MD simulation, such as network con-
nectivity, ion clustering, nano-segregation, and organ-
isation in chain and ring nanostructures or other
structural descriptors. For example, the first dissolution
stage following implantation of Bioglass® in a physio-
logical environment was simulated by Tilocca and Cor-
mack [104,105] by CPMD simulations of the interface
between the 45S5 Bioglass® and liquid water. The inves-
tigation of a 40 ps CPMD trajectory highlighted the
potential mechanism of Na+/H+ exchange in the initial
stages of the bioactivity mechanism, previously envi-
saged by Hench [104,105]. Zeitler and Cormack
[106] then simulated the bulk structure of 45S5 glasses
to elucidate the second reaction step in the proposed
mechanism of bioactivity, which is the dissolution of
bonds between oxygen and the network forming
cations of silicon and phosphorus. MD simulations
showed that the dissolution energy varies considerably

Figure 4. Correlation between the content of B2O3-substituted SiO2 in 45S5 Bioglass®. The images show the formation of HAp in
vitro, and the network connectivity by MD simulations (reproduced from the graphical abstract in Ref. [68] after permission from the
American Chemical Society).
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depending on the nature and environment of the Si–
O–Si bond being broken. However, no apparent corre-
lation with bioactivity was observed, suggesting that,
although the network disruption is a necessary process,
it is not rate-determining [105,106]. In a related article,
Tilocca, Cormack, and De Leeuw [107] simulated the
changes in the network connectivity, coordination
environment, and ion aggregation with the silica con-
tent to provide new insight into the physicochemical
behaviour of these materials. The experimentally
observed transition from highly bioactive to inert com-
positions was identified through modelling by a
marked increase in the network connectivity of the sili-
cate and by an increasing fraction of phosphate groups
involved in the network. Their analysis highlighted a
possible correlation between the loss of bioactivity
and a significant aggregation of Ca2+ and PO4

3- ions,
which leads to calcium-phosphate-rich regions for a
bio-inactive composition containing 65% SiO2 [107].
However, this effect could be counterbalanced by the
simultaneous increase in the amount of free orthopho-
sphate groups (PO4 groups, Q0), which released
quickly, enhancing the bioactivity. The strong tendency
for orthophosphate formation also leads to a separation
of silicate-rich and phosphate-rich regions (a network
of pyro- and polyphosphate groups, Q1 to Q4) for com-
positions having a high content of phosphorus
(12 mol-%). Although this phase separation could
reduce bioactivity, overall the favourable balance
between an increase in orthophosphate content should
result in a positive effect of partial substitution of Si by
P on the glass bioactivity [108].

The detailed reaction of BGs with water has been
simulated by Tilocca and Cormack, [109] and [110],
to investigate the surface of a highly bioactive Na +

Ca phosphosilicate glass. Figure 6 shows an example
for the interaction of water with an active site on a sili-
cate glass surface. Spontaneous water dissociation was
observed on the glass surface, represented by three-
coordinated Si atoms associated with proton acceptors,
such as nonbridging oxygens. Additional adsorption
sites were found to be related to the Na/Ca modifiers,
which are involved in the glass dissolution and provide
favourable pathways to allow water to penetrate the
surface. Small silica rings, 2- or 3-membered (2M or
3M) rings, were found to be stable features on the sur-
face, although there was a possible configuration allow-
ing their opening upon water dissociation. The
minimum energy barriers for 2M ring-opening mech-
anisms, obtained using String Method Car-Parrinello
calculations, revealed that an energy barrier suppresses
the opening of small rings. The simulation showed that
small closed rings that are hydroxylated after immer-
sion in an aqueous environment assist with the nuclea-
tion of Ca and P ions on the surface, which was
previously proposed to understand the initial stages
of the bioactive mechanism [109]. In another study,
they modelled the surface of a bioactive (46.1SiO2–
24.35Na2O–26.9CaO–2.57P2O5 in mol-%) and a bio-
inactive (66.9SiO2–14.47Na2O–15.98CaO–2.63P2O5

in mol-%) glass composition in contact with water.
The simulations highlighted the important role of net-
work fragmentation and sodium enrichment of the
surface in controlling the rapid hydrolysis and release
of silica fragments in solution, characteristic of highly
bioactive compositions. On the other hand, no corre-
lation was established between the surface density of
small (2- and 3-membered) rings and bioactivity,
thus signifying that additional factors must be con-
sidered to understand more fully the role of these

Figure 5. Pair distribution functions, g(R), for Ce–O pairs in silicate and phosphosilicate BGs. The figure on the LHS shows the values
of full width at half maximum (FWHM) for the peaks in the XAFS spectra at the Ce K-edge for phosphosilicate (top) and silicate
(bottom) glasses. The insets illustrate the typical oxygen arrangements around the Ce ions obtained by MD simulations [75].
The image on the RHS is the simulated structure of phosphosilicate glass by MD.
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Table 1. Biological responses to ions released from BGs and their structural roles revealed by MD simulations and experimental
techniques.
Ion Biological response in vivo/in vitro [26–28] Structural roles revealed by MD simulations and experimental techniques

Si . Essential for metabolic processes, formation and calcification of
bone tissue.

. Dietary intake of Si increases bone mineral density.

. Aqueous Si induces HAp precipitation.

. Si(OH)4 stimulates collagen formation and osteoblastic
differentiation.

45S5 Bioglass® contains chains and rings of Q2 (67.2%) SiO4 tetrahedra cross-
linked with Q3 (22.3%) species and terminated by a smaller quantity of Q1

(10.1%) species [64].

Ca . Favours osteoblast proliferation, differentiation and extracellular
matrix mineralisation.

. Activates Ca-sensing receptors in osteoblast cells, increases the
expression of growth factors.

A modifier which surrounds NBOs [64].

P . Stimulates expression of matrix la protein, a key regulator in
bone formation.

Isolated orthophosphate units can form, when P2O5 content is ∼1–6 mol-%,
building nano-domains with sodium and calcium cations [64–66].

B . Potential stimulating agent for bone tissue engineering.
. Dietary boron stimulates bone formation.

Two species of boron (3B and 4B) have been observed. Increases the overall
network connectivity in 45S5 Bioglass® [68]. Changing pH value tends to
release of boric acid into the solution. Also, the inability to form silica gel due
to fast dissolution could be the main reason for the slower rate of HAp
formation with higher boron oxide in the glass composition (Figure 4) [89].

Zn . Shows anti-inflammatory effect and stimulates bone formation
by activation protein synthesis in osteoblasts.

. Increases ATPase activity, regulates transcription of osteoblastic
differentiation genes, osteopontin, and osteocalcin.

It plays an intermediate role. The majority of Zn ions (over 80%) are 4-
coordinated and connect with the SiO4 tetrahedra. Also, 5-coordinated Zn
ions and oxygen were found in the glasses [86].

Mg . Stimulates new bone formation. Mg in 45S5 Bioglass® is coordinated by 5 NBOs of different PO4 or SiO4

tetrahedra leading to large rings in the structures. Mg is almost absent in Ca–
Na-phosphate rich regions [77].

Sr . Increases bone cell adhesion and stability.
. Shows beneficial effects on bone cells and bone formation in

vivo.
. Promising agent for treating osteoporosis.

Have a slightly higher coordination number (CN) and longer cation–O bond
distance than Ca. In 5 mol-% SrO containing 45S5 Bioglass®, CN ≈ 7.0 and the
Sr–O bond length is ∼2.56 Å. The diffusion energy barrier for Sr is ∼0.80 eV
[93–95].

Ce . Promotion of angiogenesis.
. Antibacterial.
. Scavenging superoxide radicals.
. Enhances the osteoblastic differentiation of human

mesenchymal stem cells and the production of collagen.

Increase depolymerisation, and dissolution of silicate BGs. Conversely, the
formation of cerium phosphate domains in phosphosilicate BGs is
detrimental for both the solubility and ion activity [75,76].

F . Antibacterial.
. Inhibits the formation of alveolar cavities.
. Provides higher acidic resistance of enamel by substituting OH

sites in dental apatite.
. Has stimulating effects on osteoblast cells when applied at

moderate concentrations.
. Results in slightly pH raise and favoured formation of

fluorapatite (FAp).

Is usually present as isolated fluoride ions in silicate BGs, which form strong
ionic bonds to the network modifiers (CN ∼4) rather than bonding to the
silicate network (no Si–F bonds), causing structural nano-heterogeneities
[79,82,83,85]. In contrast, it induces re-polymerisation in the phosphate BGs
by stripping the network modifying cations from the glass network [80] and
forming F–P bonds, without inducing inhomogeneities [81].

Cl . Cl-containing is more soluble than F-containing BGs and will
convert completely to HAp in the presence of water, enhancing
bone formation and suitable for making resorbable bone
substitutes.

No Si–Cl and P–Cl bonds detected. Chlorine anions are present as Cl–Ca. In the
mixed-fluoride/chloride-containing glasses, fluorine tends to surround
phosphate, whereas chloride moves toward the silicate network [78].

Ga . Antibacterial effects. Predominantly is in a 4-fold coordination environment, small amounts of 5- and
6-fold coordinated atoms have been detected, suggesting its possible
intermediate role in phosphosilicate BGs and it does not form segregated
regions [96].

Ag . Antibacterial and anti-inflammatory effects. Bind to the phosphate chains and clustering happens at low concentrations of
silver [97].

Cu . Angiogenesis and antibacterial/antimicrobial effects. Cu+ and Cu2+ ions form P–O ⋯ Cu linkages in phosphate glasses that could
contribute to ion diffusion and release [98].

Li . Stimulate osteoblast cell activity and angiogenesis. Fast moving modifier ion which should be released within the therapeutic
range (< 8.3 ppm). Each Q3 unit is surrounded by approximately three lithium
ions at an average distance of 320 pm, whereas the Q4 units are much more
remote from lithium [100,103].
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sites in the mechanism of calcium phosphate precipi-
tation on the glass surface [111].

In addition to phosphosilicate glasses, which are
archetypal BGs, bioactive phosphate-based glasses have
numerous potential biomedical applications due to the
chemical reactions/degradations they undergo with
their surroundings when implanted into the body. The
dissolution rate of these degradable glasses in physio-
logical conditions is an important factor for these appli-
cations to ensure the desirable rate of drug delivery or
nutrients to the body. Christie et al. [113] provided,
for the first time, an atomistic explanation of the fact
that the substitution of Na2O by CaO in these glasses
retards the dissolution rate. In this work, MD simu-
lations of ternary P2O5–CaO–Na2O glasses revealed
their structural properties at the atomic level that
enhanced the durability as more Ca is added. Calcium
first binds to more fragments of the phosphate glass net-
work than Na. Second, it ties together more PO4 tetrahe-
dra than Na. Also, Ca has a lower concentration of intra-
tetrahedral phosphate bonding than Na. This behaviour
is due to the calcium ion’s higher charge and field
strength. These results could help to open a path to pre-
cise control and optimisation of the degradation rate of
phosphate BGs for specific applications [113].

Tilocca, Christie, and Malik [114–116] identified
new structural descriptors that influence the solubility
and, therefore, the performances of yttrium-doped
glasses used as radioisotope vectors for in situ radio-
therapy, an application which also depends on the
glass durability. Glasses used for this purpose do not
need to be bioactive, but they must be biocompatible
and radioactive to kill malignant tumours. Yttrium-
doped glasses have been successfully used clinically
for 25 years [39]. These glasses containing yttrium iso-
tope (90Y) are made by neutron activation as the last
step in the manufacturing process, only a few hours

before clinical application [117]. The structural
descriptor for SiO2–P2O5–Na2O–CaO–Y2O3 glass
identified by MD simulation was non-covalent cross-
links between separate portions of the silicate network,
bridged by a modifier cation, which was yttrium in this
case (Figure 7). They found that higher-yttria compo-
sitions with constant network connectivity are charac-
terised by a less dense but stronger network of NBO–
Y–NBO cross-links, as well as reduced yttrium cluster-
ing. Their simulation thus showed that it should be
possible to produce 90Y-doped BGs with sufficient bio-
logical activity to support the growth of new tissues and
capable of delivering higher radiation doses through
higher yttria content. The unwanted dissolution of
harmful amounts of radioactive yttrium should be lim-
ited by the strong linkage of yttrium with non-briding
oxygens, which prevents an overly rapid degradation of
the glass network [39,114–116].

MD simulation of ion migration in BGs

MD simulations have also investigated the migration of
modifier ions in silicate and phosphate BGs. It is well-
known that the open structure of 45S5 Bioglasss® leads
to fast ion migration, which is slower in the denser net-
work of conventional high silica-containing non-bio-
active (inert) glasses [118]. It is known that ion
migration in BGs is very slow at room temperature,
requiring prohibitively long trajectories to obtain a
reasonably accurate sampling of the diffusion process.
Fortunately, most MD studies of diffusion in glasses
of biomedical interest to date have adopted an effective
strategy to handle this problem, wherein simulations
are run at a high temperature, but still below the
glass transition [118–120]. It is shown that the modifier
ions move in a static silicate/phosphate network, whose
average configuration and energy landscape match
those of the stable configuration at room temperature,
so that the description of the diffusive phenomenon at
high temperatures is still representative of realistic con-
ditions [118–120]. Another difficulty is the possible
inadequacy of the interatomic potentials employed in
classical MD runs. A potential that provides a good pic-
ture of the glass structure does not necessarily perform
as well in reproducing dynamic processes. A more rig-
orous solution would be represented by parameter-free
ab initio MD (AIMD) approaches [121]. The higher
computational demands of this approach, however,
limit the AIMD trajectory length to below the nanose-
cond range, with the consequence that an investigation
of the migration of sluggish cations is complicated,
even with the high-temperature strategy described
above [121]. MD simulations have been employed to
trace ion migration in the structure of 45S5 glass. Mod-
ifier ions travel through vacant transient sites created
by temporary displacements of another Na or Ca
cation (Figure 8) [118]. The formation of these

Figure 6. Water adsorption on the surface of Na2O–SiO2 glass
simulated by MD. Si, O, and Na in the glass are represented as
yellow, red, and purple balls, respectively. Hydrogen and oxy-
gen of water are shown by green and blue balls, respectively
(modified with permission from Ref. [112]).
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temporary sites, even if still possible, would not be as
favourable in the more rigid network of a higher-silica
glass [122]. AIMD has been employed to characterise
sodium migration in 45S5 Bioglass® (Figure 8), but
not enough calcium migration steps were observed
during the simulation time to provide an equally
clear picture of the (slower) diffusion of Ca [118].
Therefore, a more rigorous approach for tackling the
timescale problem affecting MD simulations of ion
migration in glasses, which experiences complex
energy landscapes encountered by ions migrating in
multicomponent BGs, is a required challenge for the
future [51]. An effort made by Tilocca to model,
through MD simulations, ion migration in two fluor-
ine-containing BGs of significantly different durability
[123]. The structural features of BGs could not (alone)
explain their very complex chemical degradation, then
the analysis of ion diffusion helped to correlate the
glass durability determined experimentally and the
activation barrier extracted from the simulations.
This clarified the source of the different solubility and
suggests ‘dynamical’ descriptors of bioactivity as a
key tool to predict the degradation of biomaterials, in
some cases more effectively than with the current
structural descriptors [123]. Moreover, this study
suggested the possibility of screening some potentially
interesting compositions by investigating experimental
ionic conductivities of BGs as an alternative or
complementary tool to the customary ion release
experiments in simulated body fluid [123,124].

MD simulation of nano-BGs

MD simulations can also model crystalline and glassy
nanoparticles (NPs). In an isolated 5–15 nm particle
of a BG, there are 104–105 atoms, which is an achiev-
able size for classical MD [125,126]. Tilocca [125] has
simulated a spherical nanoparticle of 45S5 Bioglass®
with a 6-nm diameter to investigate the main structural
characteristics induced by the reduced size, which

could play an essential role in the enhanced bioreactiv-
ity of these particles, in addition to their higher surface
area. A suitable computational procedure involves fast
quenching a liquid mixture constrained within an iso-
lated sphere of the desired size, roughly replicating the
flame spray synthesis used to prepare small BG nano-
particles [126]. MD simulations confirmed the idea
that the most relevant influences of the reduced size
are a further reduction in the connectivity on the sur-
face of nanoparticles, together with an increase in the
number of three-membered rings and a higher Na+/
Ca2+ ratio near the surface [125]. Moreover, the mobi-
lity of the modifiers and the density of 3-membered
silicate rings – key characteristics to sustain rapid dis-
solution and bone-bonding processes at the surface –
are also enhanced at the nanoparticle surface compared
to larger samples [125].

Furthermore, Pedone et al. [127] used MD simu-
lations to study two glass nanoparticles with compo-
sitions of 25Na2O–25CaO–50SiO2 (mol-%) (Ce-K NP)
and 46.1SiO2–24.4Na2O–26.9CaO–2.6P2O5 (mol-%)
(Ce-BG NP) doped with 3.6 mol-% of CeO2 to explain
the effect of cerium on their enhanced antioxidant
effect. Their models (see snapshots of the final structures
in Figure 9) showed that the different antioxidant
activity of the two glasses is related to the different Ce3
+/Ce4+ ratios exposed at the surface. The ratio was
∼3.5 and 13 in bulk and at the surface of the Ce-BG
NP, and 1.0 and 2.1 for the Ce-K NPs, respectively. A
higher Ce3+/Ce4+ ratio reduced antioxidant properties.
Moreover, the simulations identified reduced network
connectivity and enhanced Na+/Ca2+ ratio on the nano-
particle surface. Na, Ca and Ce sites in the proximity to
the surface are under-coordinated, leading to quick reac-
tion with water in physiological environments, thus
accelerating the glass biodegradation [127–129].

The challenge in MD simulations of nanoparticles is
to take into account the perturbation induced by the
physiological fluids that come into contact with the
particle. Thus, modelling of the interface between the

Figure 7. Identifying modifier ions (the sphere at the centre of the loop, left: Ca, right: Y) in the structures of a Y-doped glass. These
ions crosslink two tetrahedra belonging to the same chain fragment. They are holding the O3SiO–(SiO2)n–OSiO3 unit in place and
thus increasing the network durability. Adapted from Ref. [115] with permission from RSC.
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nanoparticle and an aqueous medium is quite difficult,
as well as assessing the effects of this interaction on the
properties of the system. It demands accurate force
fields to simulate the extra interactions at the biomater-
ial interface (the considerable size of the models pre-
vents the straightforward use of AIMD approaches in
this case) and longer simulation times compared to
the dry cases and largest NPs [51].

Big data and ML

A future is envisaged in which artificial intelligence
(AI) methods as part of ML strategies will significantly
accelerate the design, discovery, synthesis, characteris-
ation, and application of materials [130,131]. Compu-
tational simulations utilise physical-chemistry-based
principles, statistical mechanics, and numerical
methods to extract insights into the structure-

chemistry-property relationships of materials. On the
other hand, ML applications in materials science
build empirical models using algorithms that iteratively
learn from data to find hidden relationships and build
predictive models. ML involves several steps: raw data
collection, data cleaning, training and model building,
and model testing and evaluation [130–133]. Regard-
less of the problem under study, a precondition for
ML is the existence of a collection of clean, reliable,
and curated data relevant to the particular problem
under investigation. Often, the greatest effort is
involved in the creation and pruning of the data set.
In the ML approach, the target property can be a con-
tinuous quantity (e.g. hardness, density, Tg, liquidus
temperature, etc.), i.e. regression problems, or discrete
targets (e.g. crystal structure, specific structural
descriptors, etc.), which are referred to as classification
problems. Throughout the ML procedure, it should be

Figure 8. 3D traces of the trajectory of Na and Ca ions in 45S5 Bioglass®, illustrating the migration of an individual Na+ ion (red) and
the correlated displacements of several other atoms (Na atoms, yellow and Ca, cyan). Green spheres are phosphorus, and the silicate
network is represented as grey ball and stick. Reprinted with permission from Ref. [118], American Institute of Physics.

Figure 9. Snapshots of the final structures of the nanoparticles investigated by Pedone et al. after the MD simulation. Yellow and
violet tetrahedra are silicate and phosphate units, respectively, whereas the blue spheres are Na, Ce ions are cyan, and Ca are the
green spheres [127].
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possible to predict unseen data ensuring that a trained
model based on the original dataset can handle new
cases. Figure 10 summarises the general process of
ML in study BGs. Besides this graphical description,
interested readers can refer to recent comprehensive
papers addressing the principles, applications, and
perspectives of ML in materials science [130–133].
However, the materials science community is just
beginning to explore and use the plethora of available
tools and algorithms to mine and learn from existing
data. ML should be viewed as the combination of the
organised creation of initial datasets, the learning
and training steps, and the necessary subsequent
steps of progressive and targeted infusion of new data
[130–133].

In the design of biomaterials, combinatorial and
computational methods could be used to transition
the traditional (empirical and semi-empirical) mode
of materials discovery into an intelligent (physics-
based and AI-driven) mode of exploration and discov-
ery. As an example, biopolymer libraries are an excel-
lent means to explore a wide range of polymer
compositions efficiently and in a cost-effective manner.
Computationally modelled structures are then used to
make predictions of polymer properties, enabling a
rational approach to choose a subset of the resulting
virtual polymers for laboratory synthesis and examin-
ation [134,135].

In the field of bioactive oxide glasses (which includes
the most important families of BGs), only two pub-
lished articles have tested the applicability of ML
approaches for predicting chemical solubility [136],
and bactericidal effect [137]. Brauer et al. [136] exper-
imentally classified the solubility of degradable phos-
phate BGs of P2O5–CaO–MgO–Na2O–TiO2 in water
for 60 min at 98°C to obtain a small dataset for ANN
modelling. A dataset of 30 glass compositions versus
pH variations and dissolved P2O5 in mg L–1 was
obtained. Through the increase of the P2O5 content
in the glass composition, the glasses showed a higher
solubility and yielded lower pH values in aqueous sol-
ution, which is due to the underlying structural
changes, since long phosphate chains are more affected
by hydration than smaller chains. These changes in the
glass structure were first determined by 31P MAS-NMR
experiments [136]. Increasing Na2O concentrations at
the expense of CaO or MgO also increased the glass
solubility by disrupting ionic cross-links between
chains. By contrast, the addition of TiO2 rendered
the glasses more stable towards dissolution by cross-
linking smaller phosphate groups. The authors could
not find a relationship between glass composition
and solubility using classical regression data analysis,
but a preliminary ANN analysis demonstrated, for
the first time, that AI is indeed a valuable tool for mod-
elling the solubility of BGs [136].

In another study, Echezarreta-López and Landin
[137] found relationships between the antibacterial
behaviour of BGs and glass composition using a
trained neural network. We summarise their method
to show this first attempt of using fuzzy logic in com-
bination with ANN to model this very important bio-
logical property of BGs. The authors chose several
BGs from 10 published articles from 2000 to 2010.
The antimicrobial activity studies probe the antibacter-
ial effect of BGs by culturing them with selected bac-
teria species in specific culture media. After a preset
time of cultivation, the pH was measured, and a certain
volume of the culture was transferred, cultivated on a
new media and the bacterial growth index (GI) was
estimated. Two models were designed. In a first
model (Figure 11), 21 variable inputs were selected,

Figure 10. Schematic of the general machine learning pro-
cesses in the study of bioactive glasses. (a) data analysis and
cleaning, (b) model building, e.g. through artificial neural net-
works, including learning methods, regression, classification,
clustering, probability, estimation and optimisation, (c) model
evaluation, e.g. by minimising bias and variance, and finally
(d) obtaining knowledge on properties of BGs or biological
responses.
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which reduced the dataset from 531 to 348 and
classified it into three input groups: BG characteristics,
bacterial characteristics, and experimental microbiologi-
cal conditions. Among the BG characteristics, the pro-
duction method, BG composition regarding
concentration of SiO2, CaO, Na2O, P2O5, MgO, K2O,
Al2O3, B2O3, Ag2O, CuO (wt.%), mean particle size
(µm), morphology: nanoparticles, powder, particles
and fibres, and BG concentration (mg mL–1) were
selected. For every experiment, the bacterial character-
istics considered were: microorganism species (including
Staphylococcus aureus, Staphylococcus epidermidis,
Enterococcus faecalis, Escherichia coli, Pseudomonas
aeruginosa, and Salmonella typhi) and morphology
(bacillus or coccus). Bacteria were grown aerobically in
different microbiological experimental conditions regis-
tered as bacterial concentration (CFU mL–1), culture
time (h) and culture media categorised in two groups
named as buffered solutions (when used, simulated
buffered fluid, phosphate buffered saline or solution
saline) and nutrient solution (when used, Tryptone Soy
broth, Lysogeny broth, Mueller Hinton broth or nutrient
broth). Also, co-culture time and co-culture media
(using the same categorisation as previously noted)
were registered. In another model, final pH values
were also included as an additional input. This approach
reduced the number of facts to 129. For both models, the
output recorded was the GI, measured as a function of
the number of survival bacteria colonies. The absence
of growth (GI = 0) indicates a bactericidal effect [137].

Very sparse and moderate values of GI (GI = 1
between 0 and 5 colonies, GI = 2 between 5 and 50,

and GI = 3 between 50 and 300 colonies, respectively)
indicated a moderate growth. The GI of 4 (>300 colo-
nies) indicates no effect. A database with the inputs and
outputs from the various sources was compiled. Then
the dataset analysed by neuro-fuzzy logic technology.
This study provided the first use of ANN and data
analysis on the variability in antibacterial behaviour
reported by different authors to obtain general con-
clusions about critical parameters of BGs to be con-
sidered to combat some of the most common skin
and implant surgery pathogens [137].

This study shows that AI technology allows a novel
and integrated analysis of the results from the literature
on antibacterial activity of BGs. Neurofuzzy logic was
able to model a database on BGs, to determine the criti-
cal variables for BG antibacterial activity and to present
conclusions. While it is believed that the antibacterial
property of BGs is mainly elicited by incorporation of
therapeutic metallic ions such as silver (Ag+), zinc
(Zn2+), copper (Cu+ and Cu2+), cerium (Ce3+ and
Ce4+), and gallium (Ga3+) into their structure [26,31],
the resulting ANN model revealed that antibacterial
activity is also affected by the release of alkaline ions
to the medium with a resulting increase of pH [137].
Important variations in BG antibacterial activity on
different species of bacteria are mainly linked to the
composition of the BG and, in particular, to their con-
tent of calcium ions. The differences found in the sus-
ceptibility of different bacterial species concerning this
chemical entity should lead to addressing the study of
antibacterial activity of BGs on a wide selection of bac-
terial flora to the possible impact on the pathology or

Figure 11. Combination of a machine learning approach, ANN, and Fuzzyfication for predicting antibacterial properties of BGs
(reproduced from the graphical abstract of Ref. [137], with permission from Elsevier).
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the process in which its use will be involved. The
microbiological conditions studied (culture and co-cul-
ture media and time) did not have a significant impact
on the results of the studies of BGs antimicrobial
activity [137].

In another ML endeavour, which was focused on
process variables, Yilmaz et al. [138] modelled the
diameter of the bioactive electrospun fibres by ANNs.
Since fibre diameter depends on various parameters
(process variables, solution, and environmental par-
ameters), they used a multilayer perceptron (MLP)
strategy for predicting the average diameter of electro-
spun gelatin/bioactive fibre glasses (Gt/BGs) mixtures.
These nano-fibrous materials are very promising for
assembling scaffolds for tissue engineering enabling
to deliver drugs, growth factors, and stem cells. The
experimental results, which report one solution par-
ameter (BG content) and two process parameters (tip
to collector distance and solution flow rate) were
used. The dataset was built based on the parameters
of the 15 Gt/BGs samples were employed for the train-
ing step of the model and furthermore, the remaining 4
samples were used to evaluate the accuracy of the
model. The average percentage error between the pre-
dicted average fibre diameters and experimental values
was 3.3%. The authors claimed that the resulting model
could accurately predict the average fibre diameter of
electrospun Gt/BG without requiring any complicated
or sophisticated knowledge of the mathematical and
physical background [138].

In the field of BGs, to the best of our knowledge,
only the three abovementioned studies have used ML
approaches. However, the number of data points
used in these studies to train and test the resulting
algorithms were very small (31, 15 and 531 facts,
respectively), which is not recommended [139] for
building ANN models due to the strong possibility of
overfitting. Nevertheless, they reported that the used
ANNs reasonably predicted the chemical solubility,
antibacterial properties, and fibre diameter of the
investigated materials.

As the amount of data available in the field of BGs
science is already impressive and increasing at a
rapid pace, big data analysis will certainly help to
make them more uniform, discoverable, interpretable,
and usable in ML approaches. We could find only
one such research article published by Farano et al.
[140]. They comprehensively reviewed the current
findings on the effects of sol–gel-derived BGs on dental
stem cells for dental and periodontal regeneration.
Their study discusses and analyses reported data
related to antibacterial properties. The research was
conducted by considering the Preferred Reporting
Items for Systematic Reviews and the Meta-Analyses
(PRISMA) statement. It covered a period of five years
(from January 2012 to August 2017), and the relevant
studies were identified based on certain inclusion or

exclusion criteria. A total of 52 publications were
selected from 244 initial returns. This systematic selec-
tion and study revealed that only 13 of the 52 articles
proved both the ability of BGs to differentiate dental
cells, at the genetic level and their capability to trigger
cell-mediated mineralisation. But only 6 of these
articles showed the antibacterial properties of the
glasses. This study revealed that sol–gel BGs are non-
toxic, can stimulate cell proliferation and differen-
tiation at a genetic level, and can sustain the bacterial
population under control. Moreover, a standard meth-
odology and suitable material were suggested [140].
For example, a double doped sol–gel glass, with Sr
and Ag (for instance), in association with a polymer,
to make scaffolds (e.g. using electrospinning), could
represent a preferred approach for novel products in
dental tissue engineering.

Perspectives

In the previous sections, we observed that only a few
dozen MD simulations and a handful of ML studies
have contributed to the modelling of BGs. It is quite
clear that the development of new BGs for commercia-
lisation is now only being conducted empirically, based
on the accumulated knowledge and experience of the
glass scientists, using a guided trial-and-error
approach. This process is very expensive and time-con-
suming. As we have emphasised throughout this
article, it is now time to move away from this ‘cook
and look’ method to a new era of modelling and pre-
dicting compositions that might lead to novel glasses
having unique, useful combinations of properties. To
meet this need for substantial acceleration in the
advancement of BGs, more sophisticated and comp-
lementary approaches must be developed and
employed to enable faster, cheaper, and better R&D
on new glass compositions for improved applications.
One of us [9] has recently addressed different
approaches for designing new glasses through the
mathematical optimisation of composition-dependent
glass property modelling. The models are based on
combining (known) physical insights regarding glass
composition-property and data-driven approaches,
such as ML techniques. This combination of physical
and empirical modelling approaches may help us to
decode the ‘glass genome.’ However, successful model-
ling of product-facing properties is only half of the
story. Ensuring that the discovered new glasses can
be processable at a scale required to meet customer
demands is another challenge. This must be achieved
while minimising defects, such as inhomogeneities,
unmelted batch materials, devitrification, gaseous
inclusions or forming defects. Some important manu-
facturing-related properties include viscosity, liquidus
temperature, glass-forming ability, and batch cost [9].
Unfortunately, these attributes have been only once
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addressed by Fu et al. for the case of well-researched
45S5 and 13-93 BGs [141]. The properties of these
two glasses including strain, annealing, and softening
points, thermal expansion, density, and liquidus temp-
erature were characterised. Both glasses exhibited a
much lower liquidus viscosity than that of common
soda-lime silica glass, suggesting a significant challenge
for melting and forming of these BGs in a continuous-
unit melting system.

Here we showed the capabilities and reliability of
MD simulations, three cases of ML and a single
meta-analysis research. Other promising modelling
approaches, such as DFT, TCT, evolutionary algor-
ithms, and Monte Carlo simulation, should be encour-
aged. Below, we briefly introduce some promising
approaches (already applied in the field of other
glasses) that might be employed to model BGs. Then,
we argue that ML is a promising method to successfully
model/predict more complex multicomponent compo-
sitions and biological responses.

Physics-based modelling

Experimental data-driven models do not assume any-
thing about the underlying physics governing material
properties. However, incorporating known physics into
the models broaden their applicability and extrapol-
ation. Glassy materials are well-known to pose signifi-
cant challenges based on their three ‘non’s, viz., glasses
are noncrystalline, nonequilibrium, and nonergodic
materials [4]. This means that standard equilibrium
thermodynamic and statistical mechanical approaches
cannot be used to capture the intricacies of the glassy
state [142–149].

Mauro and Smedskjaer have proposed and reviewed
new modelling approaches to address the challenges
posed by glass-forming systems [149]. At the most fun-
damental level, the physics of glassy systems can be
described using the framework of continuously broken
ergodicity [150] and the energy landscape approach
[151], which may be recast in terms of either an
enthalpy landscape [152] or free energy landscape
[153], depending on what is appropriate for the pro-
blem under study. The description of continuously
broken ergodicity can capture the continuous vitrifica-
tion of glass-forming liquids as they are cooled into the
rigid glassy state and the continuous relaxation process
as the glasses spontaneously approach the supercooled
liquid state [150]. The energy landscape approach now
enables a realistic calculation of glass transition and
relaxation dynamics [154]. As shown by Mauro
[155], the statistics of glass structure and bonding
can be described using a (non-standard) statistical
mechanical approach. This method can be used to cap-
ture both the average values of structural parameters
and also fluctuations in the glass structure [156].
While research in this area is still new, eventually it

would be highly desirable to build a database of bond
energies that could be used to predict the distribution
of structural units in glass for complicated multi-com-
ponent systems. Once theory can be used to link struc-
ture to macroscopic properties, TCT considers the
glass as a network of two-body and three-body bond
constraints, which may be either rigid or flexible
depending on the bond energy relative to the available
thermal energy in the system. At high temperatures,
the network contains floppy modes that contribute to
the configurational entropy of the system. As the temp-
erature is lowered through the glass transition regime,
additional bonds become rigid, thereby reducing the
configurational entropy [157,158]. The number of con-
straints per atom (or rigidity) can be calculated analyti-
cally, and this enumeration requires a precise
knowledge of the glass structure that is not always
available. Therefore, constraint details (e.g. coordination
numbers, the energy associated to each constraint, and
mole fraction of each network-forming species) can be
conveniently obtained by chemical analysis, experimen-
tal structural measurements, and through MD simu-
lations, offering full and direct access to the structure
and dynamics of the atoms within glass networks
[157,158]. To this end, all these methods have been
widely used to characterise the topology of borate
[159–162], borosilicate [163], phosphate [164,165], bor-
ophosphate [166], and phosphosilicate glasses [167–
169], i.e. many of the key families of BGs (although
not specifically investigated to address bioactivity).
Also, themacroscopic properties of a system, such as vis-
cosity [170], glass transition temperature [160], or
chemical durability [171,172] can then be related to
the scaling of the topological constraints with compo-
sition and temperature. Mechanical properties such as
hardness [173,174] and fracture toughness [175] can
also be predicted using a constraint counting approach.

TCT has also been applied to model chemical reac-
tivity, such as the dissolution kinetics of glasses. Accu-
rately predicting the kinetics of glass dissolution is
especially important for BGs because ions released
from them will control most of their biological proper-
ties [26]. Pignatelli et al. [172] have used a combination
of MD simulations and TCT to show that, in dilute
conditions (far from saturation), the dissolution rate
(K) of silicate glasses can be predicted from the knowl-
edge of the number of topological constraints per atom
(nc) using the following equation [158,172]:

K = K0exp − ncE0
RT

[ ]
, (1)

where K0 is a rate constant that depends on the solution
chemistry (e.g. pH) and corresponds to the barrier-less
dissolution rate of a wholly depolymerised glass (i.e. for
which nc = 0), E0 = 20–25 kJ mol–1 an energy barrier
that needs to be overcome to break a unit atomic
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constraint, R the gas constant, and T the temperature.
Figure 12, shows that this model is valid over a broad
range of silicate-based glass compositions with a differ-
ent number of constraint (nc) and can predict the dis-
solution kinetics of silicate glasses over four orders of
magnitude [158].

Besides chemical reactivity, mechanical properties,
such as fracture toughness, are also important charac-
teristics of BGs. Fracture toughness represents the
resistance of the glass to crack propagation under stress
[12]. Bauchy et al. [175] have shown throughMD simu-
lations of sodium silicate glasses and calcium-silicate-
hydrates that flexible glasses (nc < 3) exhibit a low over-
all cohesion (low surface energy) due to their low net-
work connectivity. In contrast, stressed–rigid glasses
(nc > 3) feature high cohesion but break in a fully brittle
fashion as their high connectivity prevents any local
atomic reorganisation to release stress. In turn, isostatic
glasses (nc = 3) offer the best balance between overall
cohesion and ability to release stress through local
atomic reorganisations [175]. This ideal state of connec-
tivity makes it possible for isostatic glasses to exhibit
some nano-ductility (local energy dissipation), which
contributes to postponing fracture. Their MD simu-
lations showed that, in glasses, such nano-ductility
manifests itself through the formation of cavities in
front of the crack tip, or crack blunting [175]. This
TCT-MD simulations approach could, therefore, help
the computational design of tough BGs, which has
long been a ‘holy grail’ within the bio-glass community.

In addition to the above-specialised techniques for
modelling glass-forming systems, standard atomistic
modelling techniques, such as MD [50] and Monte
Carlo [176] can also be used. Monte Carlo techniques
include Metropolis Monte Carlo, reverse Monte
Carlo (RMC), and kinetic Monte Carlo (KMC)
approaches. In one example, the RMC technique was
used to model neutron and X-ray diffraction studies

of 45S5 Bioglass® [177]. The diffraction data were mod-
elled using RMC to allow the identification of the
atomic-scale structural features; the solid-state NMR
data were used explicitly within the model-building
process as a constraint on the connectivity of the net-
work. The 29Si NMR results suggested that the host
silica network mainly consists of chains and rings of
Q2 SiO4 tetrahedra, with some degree of cross-linking
inferred from the presence of Q3 units. The diffrac-
tion-based RMC model revealed a Na–O distance of
2.35 Å and a corresponding coordination of ∼6; the
coordination number was supported by the 23Na
NMR data which suggested that the likely sodium
environment is six-coordinate in the pseudo-octa-
hedral arrangement. The RMC model provided evi-
dence for the non-uniform distribution of Ca within
the high calcium content regions of the glass [177].
These techniques can capture the structure of glassy
systems and can also be used to calculate specific
macroscopic properties. However, standard atomistic
modelling techniques are limited in both length and
time scales, making it difficult to capture the effects
of thermal history on a laboratory timescale [8].
These limitations can be overcome using accelerated
techniques, such as metadynamics [178], the acti-
vation-relaxation technique [179], kinetic Monte
Carlo [180], energy landscape-based master equation
techniques [181], or by coupling molecular dynamics
results with TCT [158,182]. For example, in the pio-
neering works by Aertsens and co-workers [183,184]
and Kerisit et al. [185,186], KMC has been shown to
be a very effective simulation method to access to the
long time scale required for the study of dissolution
of glasses. It has been used to simulate the corrosion
of glasses in aqueous solutions, a highly relevant aspect
for BGs whose dissolution rate in body fluid is highly
important in controlling their bioactivity or forming
intimate bonding of HAp layers at the interface with
the host tissues. Furthermore, Kerisit and Du have
recently introduced a new approach (amorphous MC
approach) in which glass structures generated from
MD simulations are used as starting points for MC
simulations. Correlations between dissolution rate
and structural features were revealed in MC simu-
lations of sodium borosilicate glasses covering a wide
compositional range. Their findings highlighted the
importance of using genuinely noncrystalline struc-
tures in MC simulations of glass dissolution rather
than the classical lattice MC approach [187].

Beyond the atomic length scale, mesoscopic tech-
niques, such as phase field modelling [188] and peridy-
namics [189] may also prove highly valuable for
studying liquid phase separation and fracture, respect-
ively, in glassy systems. In one study, Sanz-Herrera and
Boccaccini [190] have used a larger scale numerical
approach, voxel-based finite element analysis, to
model the dissolution and biodegradation of a BG

Figure 12. Dissolution rate of various silicate glasses as a func-
tion of the number of constraints per atom. The dashed line is
the prediction from topological constraint theory (see Equation
1) [158].
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scaffold for tissue engineering [190]. However, this
large-scale continuum modelling, while allowing one
to reach more realistic spatial and temporal scales,
ignores the chemical details of the biomaterial and its
bio-interfaces, such as short and medium-range struc-
tural features and elementary dynamical (ion
migration and reaction) steps. All of these preliminary
efforts might be extended or improved to design and
enhance the characterisation of BGs, e.g. mechanical
properties, which are still their ‘Achilles’ heel’!

Data-based modelling

Physics-based models can, in principle, provide reliable
predictions of many glass properties, and empirical
modelling can supplement these theoretical approaches
by making use of available experimental data. A variety
of empirical models have been proposed for modelling
the composition dependence of glass properties,
including linear and polynomial regression [191] and
ML approaches [7]. The explanatory variables in the
regression models may include molar concentrations
of each component of the glass or alternative represen-
tations, such as the concentrations of the presumed
structural units [191]. To expand the modelling ability
of complex situations, ML in general and ANNs, in
particular, are promising and worth implementing.
When dealing with highly complex glass compositions
or biological interactions, one can indeed utilise ML.
Perhaps the most potent models adopt a hybrid
approach that bridges physical and empirical model-
ling approaches [7,191]. For example, the current
trend is toward accurate MD simulations with force
fields optimised through ML [192].

ANNs have been used in materials science with
moderate success to predict kinetic and mechanical
properties of polymers [193], the biological interaction
of biopolymers [194], the glass-forming ability of met-
allic alloys [195,196], extract structural information
from X-ray diffraction data [197], and recently the dis-
solution kinetics of silicate glasses [198], and glass tran-
sition temperatures, Tg, of oxide glasses [199]. The two
latter properties are of great importance for the field of
BGs. For example, the resulting neural network model
of Cassar et al. can correctly predict, with 95% accu-
racy, the published Tg value with less than ±9% error,
whereas 90% of the data are predicted with a relative
deviation lower than ±6% [199]. Table 2 compares
the glass transition temperature of some well-investi-
gated BGs with the predicted values by an ANN con-
structed in Ref. [199].

Hence, the ANN prediction error varies from 0.5 to
a maximum of 10%, whereas the experimental error
can also easily reach 10% (e.g. the experimental Tg

for 45S5 Bioglass® in Table 2). Furthermore, Onbaşlı
et al. [209] have shown how companies like Corning
Inc. used the unique advantage of developing a neural

network and genetic algorithmic models for predicting
compositions that would yield the desired liquidus
temperature and Young’s modulus of complex glass
compositions with more than eight constituent oxides.
For such development of commercial glasses, exper-
imental measurements of the entire composition
space are prohibitively expensive and time-consuming.
Also, for systems with such complexity, there is no
physically predictive model. There are requirements
imposed on the end properties of glass and manufac-
turability requirements, such as appropriate liquidus
temperature and a sufficiently low viscosity at a given
temperature. These competing necessities are the driv-
ing force for the development of data-driven ML
models of glass composition and properties [209].

Regarding fundamental glass modelling, we believe
that data-driven predictive methods for chemical com-
positions and their corresponding physical properties
offer grand opportunities to (i) develop glass compo-
sitions with improved mechanical, thermal and chemi-
cal properties, (ii) to expand or design new and exotic
glass chemistries, and (iii) to find the best technological
attributes [210–213]. It should be emphasised that the
integration of physics-based modelling techniques (e.g.
MD simulations) and data-driven approaches (e.g.
ANN) can mutually inform and advance each other
rather than being two independent routes. For
example, high-throughput atomistic simulations offer
a promising route to generate large bodies of consist-
ent, accurate data that can be used as training sets for
ML approaches. In turn, ML optimisation techniques
offer a unique opportunity to develop new sets of
reliable, transferable, and computationally-efficient
force fields for atomistic modelling [213,214].

In the case of BGs, the interaction between glass and
living tissue is currently too complicated to address
from a physics-based approach. Hence, researchers
still rely on empirical data. Research on BGs makes
substantial use of image data, which can be interpreted
using an appropriately trained neural network model
to guide their optimisation. Glass article morphology
(powder, fibre, monolith, scaffold, etc.) also plays an
important role in governing its degree of bioactivity.
Such morphology and processing effects can also be
incorporated into ML-based models. Many BG compo-
sitions are too complicated to be simulated directly, but
simulation techniques can inform us about the basic
structural units in simplified glasses, which can be
used to guide the development of new multicomponent
BGs. However, data-based modelling faces many
challenges. Therefore, interested readers are referred
to the recent comprehensive discussion around the
issues and challenges ahead of the data-driven model-
ling of glasses and ceramics. Still, several important
issues, such as maintaining data integrity, risk of overfi-
tting, bridging physical and empirical modelling
approaches, leveraging complex data (e.g. images),
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and creating interatomic potentials fromML remain to
be explored [215].

Summary and conclusions

Despite the intensive research activity, the large num-
ber of publications, and the resulting knowledge of
BGs, our most critical remark is that the materials
science and engineering community is only slowly
embracing ML approaches, data science, and compu-
tational simulations in this field. It is likely that the
complexity of the glassy state, which is defined by
three nons (nonequilibrium, noncrystalline, and none-
rgodic), and the complex, intricate interactions of liv-
ing cells with bio-glasses have been a conceptual and
practical barrier to the use of modelling. However,
with the continued increase of the acquired knowledge
on the properties of glasses, data creation and compu-
tational power, the prospects of modelling complex
problems and predicting the biological response of
cells in contact with glass surfaces are achievable. We
believe that modelling of BGs should be greatly stimu-
lated and intensively applied to the design of specific
aspects of glass characterisation, such as chemical
degradation, mechanical properties, thermal expansion
coefficient, and elastic modulus, as well as effects of
porosity, morphology, etc.

ML approaches are also feasible in the context of
modelling the biological response of this type of bioma-
terial as its ability to influence unique processes after
implantation, such as protein adsorption, cell adhesion,
proliferation, osteogenesis, angiogenesis, and antibacter-
ial effects. The key challenge is to accumulate a sufficient
quantity of high-quality data. The amount of data avail-
able in the field of BGs is already substantial and increas-
ing at a rapid pace; hence, new and more efficient tools
for storing, mining, cleaning, and using these data are

urgently needed. In such an effort, databases integrated
with computational tools should be developed for help-
ing the design of new BGs in a more rational and
efficient manner. Currently, scattered, non-uniform
experimental raw data constitutes a serious hurdle for
the modelling experts. Therefore, the close engagement
between experimental and theoretical groups is crucial
for the field of modelling BGs to move forward. Acces-
sible, high-quality raw experimental datasets are indis-
pensable, as well as helping to make them more
discoverable, interpretable, and reusable. As such, the
full availability of experimental data and computer
codes upon request is increasingly a requirement for
researchers. Still, much workmust be done in this regard
to encourage experimentalists to share and refine valu-
able scientific data and push forward the ‘model-
based’ design of BGs. To achieve this goal, cross-disci-
plinary collaboration among glass and data scientists,
bioengineers, and clinicians in the exciting field of BGs
is absolutely necessary.
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Table 2. Experimental glass transition temperatures (Tg) of some well-investigated BGs [141,17] compared with values predicted by
a software resulting from the ANN of Ref. [199].

Codes

Glass composition (wt.%)

Experimental Tg (°C)
Predicted Tg (°C)
by ANN [199] Error (%)Na2O K2O MgO CaO SiO2 P2O5 B2O3

45S5 24.5 0 0 24.5 45 6 0 500 [200]
552 [204]

516 37

ICIE16 6.6 10 0 32.9 48 2.5 0 575
[200]

623 8

13-93 6 12 5 20 53 4 0 606
[201]

585 3

1-98 6 11 5 22 53 2 1 608
[202]

588 3

6P53B 10.3 2.8 10.2 18 52.7 6 0 530
[203]

578 9

S53P4 23 0 0 20 53 4 0 561
[204]

521 7

58S 0 0 0 32.6 58.2 9.2 0 785
[205]

706 10

70S30C 0 0 0 28.6 71.4 0 0 804
[206]

742 8

P50C35N15 9.3 0 0 19.7 0 71 0 420
[207]

400 5

1.5N1.5C3S + 4P 23.75 0 0 23.75 48.5 4 0 520
[208]

523 0.5
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