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A B S T R A C T   

Understanding and controlling the liquid to crystal transformation is a central topic for numerous natural 
phenomena and technological applications. However, the microscopic mechanism of crystal nucleation is still 
elusive, which leads to strong controversies regarding the ability of the most used model, the Classical Nucleation 
Theory (CNT), to describe nucleation rates in supercooled liquids. In this work, we were able to deeply supercool 
Zinc Selenide (ZnSe), and determine spontaneous homogeneous steady-state nucleation rates, JMD, by MD sim
ulations using the mean lifetime method. At moderate supercoolings, where the nucleation rates are much 
smaller, we used the seeding method to compute the nucleation rates by the CNT formalism, JCNT , without any 
fitting parameter, using the physical properties obtained by MD simulations: the melting temperature, Tm, 
density, melting enthalpy, diffusion coefficient, D+, and the critical nucleus size, N*, combined with two ex
pressions for the thermodynamic driving force, Δμ. The values of interfacial free energy, γ, calculated by the CNT 
expression using the MD simulation data, via both the seeding method and the mean lifetime method at moderate 
and deep supercoolings show a weak temperature dependence, which is in line with the Diffuse Interface Theory. 
The extrapolated values of γ, from the spontaneous nucleation regime to the seeding nucleation region cover the 
range of values of γ calculated via the seeding method and the CNT formalism. Finally, the JCNT extrapolated 
from moderate supercoolings to deep supercoolings are in good agreement with the JMD. These results confirm 
the validity of the CNT.   

1. Introduction 

The liquid to crystal transition is a ubiquitous phenomenon, which is 
a very important scientific and technological subject in diverse fields, 
such as biology, mineral formation, semiconducting materials, water 
and metal solidification, glass-ceramics and glass formation. The first 
step of crystallization is the birth of critical nuclei. Their size, structure 
and rate at which critical nuclei appear and grow are fundamental pa
rameters for understanding and controlling crystallization. Although 
nucleation rates, J(T), can be measured experimentally in a few systems 
due to the very small nucleus size (nm) and either a too short or too long 
lifetime, it is extremely difficult to understand and describe the micro
scopic mechanism of nucleation, which remains elusive. To this end, 
computer simulation techniques provide, in principle, a suitable tool to 
dig deeper into this process. At least three main methods are available to 
obtain crystal nucleation rates via molecular dynamics simulation (MD): 
1) the mean lifetime method [1], 2) enhanced-sampling methods 

[2,3,4,5,6], and 3) the seeding method [7,8,9,10]. We will use methods 
1 and 3 in this study. 

The Classical Nucleation Theory (CNT) [11,12] is one of the most 
well-known models to describe the nucleation process. This theory as
sumes that the formation of crystal nuclei takes place as a result of 
thermal fluctuations in a supercooled liquid (SCL). If an embryo over
comes a certain threshold size, N*, it becomes a critical nucleus that 
spontaneously grows until it meets other growing crystals otherwise the 
liquid solidifies. On the other hand, fluctuations below the critical size 
decay by dissolving back into the supercooled liquid. According to this 
theory, the interplay between the supercooled liquid/nucleus interfacial 
free energy, γ, and the difference between the chemical potentials of the 
crystal phase and the supercooled liquid, Δμ, describes the thermody
namics of crystal nucleation. Finally, a third key property is the effective 
diffusion coefficient, which controls the atomic transport rate at the 
liquid/crystal interface, D(T). The independent determination of these 
three quantities allows CNT calculations and comparison with 
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experimentally determined or simulated nucleation rates. This endeavor 
has been a theme of several papers, which owing to the scarcity of direct 
measurements of these properties, often questioned the validity and 
accuracy of the CNT. Hence, knowledge of these fundamental parame
ters is a necessary step to test CNT or any other nucleation theory [13]. 
Unfortunately, very few studies have assessed all of them to allow a 
rigorous evaluation of the theoretical model. 

Previous works have been carried out to test the CNT by molecular 
dynamics simulations, covering from idealized toy models, such as 
Lennard-Jones by different methods [10,14,15,16,17,18,19], and hard 
sphere colloids [20] to realistic models of real substances, for instance 
H2O [21,22], SiO2 [23], NaCl [24,25], Ge [26], BaS [27], Ni50Ti50 [28] 
and Ni [29]. In all the above-mentioned papers, the CNT predictions 
were (more or less) validated by MD simulations. However enormous 
discrepancies of 10 to 50 orders of magnitude were found when nucle
ation rates calculated by the CNT formalism were compared with actual 
laboratory experiments with glass forming substances, e.g., as referred 
to in [30,31,32]. In these experimental studies, the diffusion co
efficients, D, were estimated via the liquid viscosity and the interfacial 
free energy, γ, was left as a (constant) fitting parameter. Some authors 
related this huge discrepancy to the absence of a direct way of measuring 
these key parameters (D and γ) and also CNT intrinsic limitations; for 
example the assumption that a critical nucleus of molecular size has 
macroscopic bulk-size properties and that the liquid/nucleus interface is 
sharp, even though the nanosized critical cluster may be almost purely 
“interface” [13]. Hence, the validity of the CNT remains an open prob
lem that warrants further detailed work. 

For most substances, it is very difficult to detect (by actual experi
ments or simulations) spontaneous homogeneous nucleation, however 
in some supercooled liquids, homogenous nucleation occurs naturally 
within reasonable MD simulation time scales with nucleation rates of 
(1030 − 1035)m− 3s− 1 [16,19,23,33,34,35,36]. The study of such unique 
systems provides a great opportunity to test the limits of validity and 
applicability of the CNT and other theories. Here, we are interested in 
comparing nucleation rates calculated using CNT, with values found 
directly from a substance that spontaneously crystallizes in MD simu
lation time scales. Some simulation studies have compared the calcu
lated nucleation rates with values determined independently by MD 
[16,23,24,36,37,38]. These comparisons provide a key tool for devel
oping, testing, and perhaps improving theoretical descriptions of 
nucleation. To examine the validity of the CNT, in this work we obtained 
the steady-state nucleation rates, Jss(T), for Zinc Selenide (ZnSe) using 
the mean lifetime method. We have also calculated the nucleation rates 
using the CNT and physical properties obtained by MD via the seeding 
method. Jointly, these two MD methods covered a supercooling range 
(0.7 − 0.9)T/Tm. 

The substance chosen in this study, ZnSe, is very important in optics 
[39,40]. This material is a type II-VI semiconductor with a wide- 
bandgap, which can be made in both hexagonal (wurtzite) and zinc- 
blende structures, and many attempts have been made to understand 
its structure, optical and electronic properties experimentally, for 
example [41,42,43]. Therefore, further knowledge of physical proper
ties and kinetic behavior of ZnSe could be meaningful. However, this is 
not the focus of this work. Here, due to the fact that homogeneous 
nucleation can be detected in MD timescales using a robust potential, we 
use this substance as a model to investigate the validity of the CNT by 
comparing calculated nucleation rates with values of spontaneous 
nucleation obtained by MD. 

The paper is organized as follows. In the next section, we describe the 
theoretical background, Section 3 describes the simulation details of the 
substance ZnSe, and in Section 4 we present the results obtained for the 
melting temperature, density, critical nucleus sizes, interfacial free en
ergy and nucleation rates. We then use these data to calculate nucleation 
rates by CNT and compare them with the MD nucleation rates. Finally, in 
Section 5, we discuss and summarize the main results. 

2. Theoretical background 

According to the Classical Nucleation Theory [11,12], in a super
cooled liquid system at constant temperature, T, and pressure, p, the 
appearance of a crystal cluster requires a Gibbs free energy change or 
work of formation, given by 

ΔG(N) = − NΔμ+ γA (1)  

where N is the number of particles in the crystal cluster, Δμ is the 
chemical potential difference between the supercooled liquid and the 
crystal phase, Gscl − Gcrystal, which is positive, γ is the crystal-liquid 
interfacial free energy, and A is the cluster surface area. In this equa
tion, the strain energy term is neglected due to its (assumed) fast 
relaxation in the supercooled liquid. 

The function ΔG(N) goes through a maximum at 

ΔG* = N*Δμ/2 (2)  

where N* is the number of atoms in the critical nucleus. If the cluster 
shape is spherical, then: 

N* =
32πγ3

3ρ2
s Δμ3 (3)  

where ρs is the number of atoms per unit volume in the critical crystal 
nucleus; its unit is A− 3. This density is supposed to be equal to the 
density of the crystal at the same temperature. 

The steady-state nucleation rate, Jss(T), i.e., the average number of 
viable crystal nuclei formed per unit time per unit volume is given by the 
product of: i) the number density of critical clusters, ρf exp[− ΔG*/(kBT)], 
where ρf is the number of atoms per unit volume in the supercooled 
liquid and kB is the Boltzmann constant and ii) the dimensionless Zel

dovich factor Z* =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δμ

6πkBTN*

√

and iii) the attachment rate of the atoms 

from the liquid to the critical cluster, D+, 

Jss(T) = Z*D+ρf exp[
− ΔG*

kBT
] (4) 

For most cases, Z* = 0.01 − 0.10 [12], which characterizes the 
shallow curvature of the energy barrier at its top, and takes into account 
the possible dissolution of a fraction of supercritical nuclei. The evalu
ation of D+ depends on the choice of the model that describes the process 
near the surface of the growing crystal nuclei. Therefore, to obtain the 
theoretical value of Jss(T), we need to know four properties of the sys
tem: Δμ, ρf ,N* and D+. Below we explain how each property can be 
determined by computer simulations. 

In the case of isobaric supercooling, Δμ can be well approximated by 
a widely used expression [44], which gives an upper bound 

Δμ = Δhm
(Tm − T)

Tm
(5) 

or by using an alternative form [45,46,47] if the difference between 
the specific heats of the liquid and crystal at the melting point, Δcp,m, is 
known 

Δμ = Δhm
(Tm − T)

Tm

[

1 −
Δcp,m

Δsm

(Tm − T)
2Tm

]

(6)  

where Tm is the melting temperature, Δhm is the melting enthalpy; the 
difference between the enthalpy of the liquid and crystal at the melting 
temperature, Δsm is the melting entropy, which is related to Δhm by 
Δsm = Δhm/Tm. In this article, we used both expressions (5) and (6) for 
calculating Δμ. 

The number density of the fluid, ρf , and crystal, ρs, can be calculated 
from an ensemble average in an NpT simulation at any specific 
temperature. 
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Evaluation of N* depends on the technique used. In the seeding 
method, its value is pre-known. A crystalline cluster of given shape, 
structure and number of atoms is inserted in the supercooled fluid. 
Otherwise, determination of N* according to Eq. (3) needs the knowl
edge of γ, Δμ and ρs. 

It is quite difficult to measure γ experimentally. However, several 
simulation methods have been implemented for determining γ, such as 
the mean lifetime method [1], the cleaving method [48], the capillary 
fluctuation technique [49], metadynamics [50] and umbrella sampling 
[20]. After determining γ, one can evaluate N* via Eq. (3). Here we have 
used both the seeding method and the mean lifetime method. 

To obtain D+, we can use an expression proposed in [51], used e.g. in 
refs. [10,52] 

D+ =
〈(N(t) − N* )

2
〉

2t
(7) 

D+ can be obtained from the CNT [10] 

D+ =
24D(T)

̅̅̅̅̅̅̅̅
N*23

√

λ2 (8)  

where λ is the distance travelled by the particles in the vicinity of a 
cluster to attach to its surface, and is expected to be of the same order of 
magnitude as the unit cell of the crystal phase, in the case of ZnSe λ =

5.643Ao. D(T) is the effective diffusion coefficient, which is obtained 
from the mean square displacements via Einstein’s equation, 

〈
r2(t)

〉
=

6Dt. 
In the seeding method, after determining all parameters explained 

above, one can introduce them into Eq. (4) to calculate the nucleation 
rates for some thermodynamic state points, and also to extrapolate the 
Jss(T) outside the temperature range where the calculations were 
performed. 

In situations when spontaneous nucleation can be detected by MD for 
reasonable computational times, we can use the mean lifetime method 
[1] to determine nucleation rates to determine nucleation rates as it was 
previously done for instance in Ref. [27]. In this technique, by esti
mating the average time of the birth of the first nucleus, τ, and using the 
definition JMD = 1/(τV), where V is the volume of the system, one can 
calculate the nucleation rate for some thermodynamic state points, and 
then analyze the MD results for JMD by the CNT. By substituting Eq. (3) 
and Eq. (8) into Eq. (4) the CNT equation becomes [53] 

Jss =

̅̅̅̅̅̅̅̅
γ

kBT

√
D(T)

λ4 exp[
− 16πγ3

3kBTρs
2Δμ2] (9) 

With this equation we can estimate the average value of interfacial 
free energy, γ, from the slop of a plot of Ln[J

̅̅
T

√

D(T)] versus 1/(Tρs
2Δμ2) [53]. 

Another way to find the temperature dependence of γ is to substitute the 
values of JMD, T, D(T), Δμ, λ and ρs into Eq. (9) and solving the equation 
to evaluate γ for each thermodynamic state point and then fit these 
values to find the temperature dependence of γ(T). By knowing the 
average value of γ, or its temperature dependence at deep supercoolings, 
one can extrapolate JMD(T) to the moderate supercooling region where 
nucleation rates were estimated by the seeding method. Thus, we can 
compare the extrapolated nucleation rates in the deep supercooling 
regime (spontaneous nucleation) with those obtained in the moderate 
supercooling regime (seeded nucleation). 

3. Simulation details 

In this work, we developed an effective inter-atomic potential con
sisting of two-body and three-body interactions to describe the kinetics 
of crystal nucleation and growth in supercooled ZnSe: 

V =
∑N

i<j=1
Vij

(2)( rij
)
+

∑N

i,j<k=1
Vjik

(3)( rij, rik
)

(10) 

The two-body term includes 4 terms: steric repulsion, coulomb 
interaction due to charge transfer between ions, charge-induced dipole 
attractions due to the electronic polarizability of anions, and van der 
Waals attraction, which is given by the equation: 

V (2)
ij (r) =

Hij

rηij
+

ZiZj

r
e− r/λ −

Dij

2r4e− r/ξ −
Wij

r6 (11)  

Here Hij is the intensity of the steric repulsion, Zi is the effective charge 
of the ions, in units of the electronic charge |e|. η is the exponent of the 
steric repulsion, λ and ξ are the coulomb and charge-dipole interaction 
screening lengths respectively. Dij = αiZj

2 + αjZi
2, αi is the electronic 

polarizability of ions. Finally, Wij is the strength of the dipole–dipole 
attractions. 

The three-body effective interaction potential is given by a product 
of spatial and angular dependence to describe bond bending and bond 
stretching correctly. 

V (3)
jik

(
rij, rik

)
= R(3)(rij, rik)P(3)(θjik) (12) 

where 

R(3)( rij, rik
)
= Bjikexp(

γ
rij − r0

+
γ

rik − r0
)Θ(r0 − rij)Θ(r0 − rik) (13)  

P(3) =
(cosθjik − cosθjik)

2

1 + Cjik(cosθjik − cosθjik)
2 (14) 

Bjik is the strength of the interaction, θjik the angle formed by r→ij and 
r→ik, θjik and Cjik are constant, and Θ(r0 − rij) is the step function. The 
potential was parameterized in a way that the cohesive energy at T =

0K, density, bulk modulus, the C11 elastic constant, the vibrational 
density of states and the specific heat of ZnSe were reproduced with this 
potential and were in agreement with experimental results from 
[54,55,56]. The potential parameters are listed in Table 1. All parame
ters for interactions of Zn-Zn-Se, Zn-Se-Zn, Se-Zn-Se and Se-Se-Zn were 
set to zero. All simulations were done in NpT and NVT ensembles. The 
LAMMPS package [57], was used for the simulations. The timestep was 
1.0 fs. Nose-Hoover thermostat and barostat were used to control the 
temperature and pressure. Periodic boundary conditions were applied in 
all directions. The potential was truncated at r = rc = 6.2 Ao. 

In the next section, we explain the MD results of melting tempera
ture, diffusion coefficient, the critical nucleus size, the thermodynamic 
driving force and densities. 

4. Simulation results 

4.1. Determining the melting temperature 

Knowledge of the melting point is the first step towards the CNT 

Table 1 
The values of potential parameters used in our simulations of ZnSe.   

Zn-Zn-Zn Se-Se-Se Zn-Se-Se Se-Zn-Zn 

H(eV.A∘η) 82.800611 3291.461985 3981.333767 3981.333767 
η  7 7 9 9 
Zi  0.8261 − 0.8261 0.8261 − 0.8261 
Zj  0.8261 − 0.8261 − 0.8261 0.8261 
λ(Ao) 5.0 5.0 5.0 5.0 

D(eV.A∘4) 0.0 39.362098 19.681049 19.681049 

ξ(Ao) 3.75 3.75 3.75 3.75 

W(eV.Ao6) 0.0 0.0 355.547483 355.547483 

B(eV) 0.0 0.0 1.7540574 1.7540574 
γ(Ao) 0.0 0.0 1.0 1.0 
r0(Ao) 0.0 0.0 3.8 3.8 
C  0.0 0.0 6.00 6.00 
cos(θ) 0.0 0.0 − 0.333333 − 0.3333333  
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investigation. For this task, a zinc-blend structure of ZnSe was created in 
a cubic box of 56.43Å in length. The total number of atoms was 8,000. 
We determined the melting temperature Tm at p = 0 bar, with two 
different approaches. We analyzed both mechanical and thermodynamic 
melting temperatures of ZnSe. 

4.1.1. Mechanical melting point 
To determine the mechanical melting point, we started by equili

brating the crystalline phase at T = 300K and pressurep = 0 bar, then 
the system was heated up to 2500K and cooled down to the initial 
temperature with the same heating/cooling rate ranged from 10 to 
0.1K/ps. Fig. 1 shows the potential energy per particle as a function of 
temperature for three different heating/cooling rate. During the heating 
process, a sudden jump in potential energy occurs at superheating 
temperature T+ and during the cooling, there is a drop in potential en
ergy at supercooling temperatureT− . From the magnitude of super
heating and supercooling temperatures, one can estimate the 
mechanical melting temperature by the equation [58,59]: 

Tm= T+ + T− −
̅̅̅̅̅̅̅̅̅̅̅
T+T−

√
(15) 

The best estimate for this temperature is Tm ≅ 1357K at the lowest 
cooling rate 0.1K/ps. The value of Tm calculated by this method relates 
to the cooling rate. The potential energy-temperature curve reveals the 
effect of the heating/cooling rate on the determination of melting 
temperature by the hysteresis method. Hence, it is important to choose a 
more precise method. 

4.1.2. Thermodynamic melting point 
In comparison to the hysteresis approach, the standard phase- 

coexistence technique used in refs. [60,61,62] has more physical 
meaning. In this approach, we discover the temperature, at which the 
solid–liquid interface coexists, this condition occurs when the free en
ergy of solid and liquid states becomes equal. To do so, we prepared a 
supercell containing 10 × 10 × 30 unit cells of ZnSe (24, 000 atoms) and 
heated it up to T = 1300K at p = 0 bar. Then the supercell was divided 
into two parts in the z direction. One half of the atoms in the supercell 
was kept fixed at T = 1300K and the other half was heated up to a higher 
temperature (such as T = 2500K which is above the experimental 
melting temperature Tm,exp = 1800K [63]) at p = 0bar to create a liquid 
phase. The liquid part is then cooled down to temperature T = 2000K 
(close to Tm,exp = 1800K but still higher than the expected melting 
temperature). The result of this process was a supercell containing solid 
at T = 1300K in one half, and liquid at T = 2000K in the other. 

The two-phase supercell prepared was heated by MD runs in the NpT 
ensemble and temperature T was increased from 1300K to 2000K in 50K 
intervals. At each temperature, the system was left to evolve for t = 1ns 
and the phase change of the box was visually monitored. Fig. 2 shows the 
potential energy per particle as a function of time at seven selected 
temperatures above and below Tm. At T < 1350K, the system crystal
lized and simultaneously the potential energy decreased, where for 
T > 1400K, the liquid phase progressed and the system melted rising the 
potential energy. Next the initial two-phase supercell was heated from 
1400K to 1350K in 10K intervals and after that in 2K intervals to 
determine the melting point more precisely. At T = 1388 ± 2K, which is 
called the melting point, the solid–liquid interface remains stationary. 
This value is 30K above the mechanical melting point and 412K below 
the experimental melting point. Tm = 1388 ± 2K will be used as the 
melting point throughout this paper. 

4.2. Nucleation rates calculated via the seeding method 

To prepare the configuration of an amorphous matrix containing an 
artificially created crystalline nucleus, first a supercell containing 13 ×

13 × 13 unit cells, equivalent to 17,576 atoms at T = 300K, was 
equilibrated. Then, the crystal seed was heated up to T = 1000K, which 
is below its melting temperature. In the geometrical center of the hot 
crystal, a sphere region with a certain radius was defined. Therefore, 
initially, the spherical seed and the matrix around it have the same 
structure and lattice parameter initially. Finally, the matrix was heated 
up to T = 2000K to liquefy, while the atoms in the solid sphere were 
kept fixed at their positions. Finally, the matrix was cooled down below 
the equilibrium melting temperature by a cooling rate of 1K/ps. Thus, 
we constructed a supercooled liquid containing a crystal seed of radius 
R*. 

4.2.1. The coexistence (critical) temperature 
After preparing the system (matrix+ seed); we found the coexistence 

(critical) temperature, T*, at which, the seed started to grow in the 
supercooled liquid. For reliable statistics, fifteen independent configu
rations of the matrix containing the same nucleus size were studied. 
Owing to the fact that the equilibrium between the nucleus and its 
surrounding metastable phase was unstable, finding the coexistence 
temperature became difficult. Hence, we defined the coexistence tem
perature as the temperature at which the seed grows in seven or eight of 
the fifteen independent configurations and fully dissolves in remained 
configurations. This procedure was repeated for six different seed sizes. 

Fig. 1. Potential energy per particle as a function of temperature for three 
different heating/cooling rates of 10, 1.0 and 0.1K/ps. The melting temperature 
can be determined from the superheating temperature T+ and supercooling 
temperature T− using Eq. (15). 

Fig. 2. Potential energy per particle versus time at selected temperatures above 
and below melting temperature. For temperatures above Tm = 1388K, the 
potential energy increased, whereas for temperatures below it, it decreased. The 
potential energy is practically constant at the melting point. 

L. Separdar et al.                                                                                                                                                                                                                               



Computational Materials Science 187 (2021) 110124

5

Each amorphous matrix+ seed was allowed to evolve for t = 0.5ns at 
each temperature to test if the seed grew or dissolved. During this time 
interval, solid-like particles in the seed environment were identified by 
calculating the Steinhardt bond-order parameter [64,65], Sij =
∑m=+6

m=− 6q6m(i).q*
6m(j), where q6m(i) = 1

Nb(i)
∑Nb(i)

j=1 Ylm( r→ij) is the Steinhardt 

parameter, Ylm( r→ij) are the spherical harmonics, Nb(i) is the number of 
nearest neighbors of atom i, r→ij is the vector connecting it with its 
neighbors j. If the value of the dot product, q6.q6 > 0.5, the parti
cle–particle association was considered solid-like [10]. Recently, it was 
shown that the choice of Nb(i) affects the value of N* and the nucleation 
rate [66]. We tested the q6 results using a set of different numbers of 
connections at one temperature, to find which is the most appropriate 
for the crystallization case. In this case, if a particle is involved in more 
than eleven solid-like associations, it was considered to be in the seed 
environment. Details about how one can determine the number of 
connections are provided in ref. [64]. 

A good criterion to determine the growth of a crystalline seed is the 
time evolution of the potential energy U(t), or enthalpy. A sharp 
decrease in potential energy indicates seed growth and the beginning of 
a phase transition. If U(t) increases or remains approximately unaltered, 
this means that the seed dissolved. Fig. 3 shows the time evolution of the 
potential energy per particle for two independent configurations with 
the same seed size N = 442 particles, at T = 1235K. In curve (1) the seed 
has dissolved, whereas in curve (2) the seed has grown. The inset shows 
the time evolution of the number of particles in the seed, determined by 
the q6 method. 

Regarding the U(t), the critical temperatures at which the seed has an 
equal probability of growth and dissolution were determined for six 
different seed sizes. Fig. 4 shows the number of atoms in the critical 
crystal seed, N*, as a function of temperature. The critical size, N*, de
creases monotonically from N* = 642 to N* = 59 with decreasing tem
perature, as expected from the CNT. From N* and the density of crystal 
at the critical temperatures, ρs(T*), the radius of the critical nucleus at 

each T*, R* =

(
3N*

4πρs(T*)

)1/3
, was calculated. The inset of the Fig. 4 shows 

the calculated R* as a function of 1
ΔT = 1

(Tm − T). It is obvious that R* is 
practically a linear function of the inverse temperature, in accordance 
with the CNT prediction and the MD results reported in Refs. [26,52]. 

4.2.2. The thermodynamic driving force 
As discussed in Section 2, another quantity that must be determined 

for testing the CNT is the difference between the chemical potentials of 
liquid and crystal, Δμ. In this study, Δμ was calculated by Eq. (5) and Eq. 

(6) using the MD results of Tm = 1388K, Δhm = 0.266ev/atom and 
Δcp,m = 5.4× 10− 5ev/K. The results of Δμ are shown in Table 2. There is 
no significant difference between the values of Δμ calculated by the two 
equations. To calculate Δcp,m, we plotted the enthalpy as a function of 
temperature during the heating and cooling process with the rate 1K/ps 
explained in Section 4.1.1. A numerical derivation of each heating/ 
cooling curve, dh

dT, gives the temperature dependence of cp(T) in the 
crystal and liquid phases. The difference between the specific heat of 
crystal and liquid at melting temperature, Δcp,m = cp,liq(Tm) − cp,crystal(Tm)

gives us Δcp,m = 5.4× 10− 5ev/K. 

4.2.3. The number density of crystal and liquid at critical temperatures 
After determining the critical temperatures, T*, at which the seeds 

have an equal probability of growth and dissolution, we obtained the 

Fig. 3. Time evolution of the potential energy of the system (supercooled liq
uid+ seed) at (T = 1235K). In (1), the seed dissolves, whereas in (2), the seed 
grows. The inset shows the time evolution of the number of particles in the seed 
for each configuration. 

Fig. 4. Number of atoms in the critical crystal nucleus, N*, as a function of 
temperature. T* was obtained from the seeded nucleation simulations. By 
substituting the ρs(T), Δμ(T) from Eq. (5) and γ(T) from the linear fit of γ(T*)

into Eq. (3), N* was extrapolated to the region where spontaneous nucleation 
occurs. The red dashed line refers to this extrapolation. The vertical dashed line 
separates the seeded from the spontaneous nucleation regime. The inset shows 
the radius of the critical nucleus, R*, as a function of 1

(Tm − T). The black circles in 

the inset refer to the R* calculated from R* = ( 3N*

4πρs(T*)
)
1/3 at each critical tem

perature. The red dashed line in the inset refers to the R* extrapolated to the 
deep supercooling regime by substituting the values of ρs(T) and the extrapo

lated N*(T) into R* = (
3N*(T)
4πρs(T)

)
1/3. The green circles refer to R* and N*, which 

were calculated from R* = 2γ/(ρsΔμ) and N* = ρs(4πR*3/3), respectively, using 
the mean lifetime method. Here γ was calculated from Eq. (9) by inserting the 
JMD, Tm, λ, D(T) and Δμ(T) into Eq. (9). 

Table 2 
Values of the quantities used for the calculation of J(T) via the seeding 
technique.  

N*  642 442 245 162 91 59 

T*(K) 1255(5) 1235(5) 1215(5) 1190(5) 1140(5) 1115(5)

D+(ps− 1)  60.90 51.28 28.96 26.93 24.10 9.35 

ρf (Ao− 3)  0.0334 0.0336 0.0338 0.0341 0.0348 0.0351 

ρs(Ao− 3)  0.0416 0.0417 0.0418 0.0418 0.0420 0.0421 

Δμ(eV)
(Eq.  
(5))  

0.0254 0.0293 0.0331 0.0379 0.0475 0.0523 

Δμ(eV)
(Eq.  
(6))  

0.0251 0.0288 0.0325 0.0371 0.0463 0.0508 

γ(J/m2)  0.130 0.129 0.128 0.127 0.124 0.123 

J(m− 3s− 1) 3.5E +
07 

9.17E 
+ 13 

2.27E 
+ 23 

1.76E 
+ 27 

6.68E 
+ 30 

1.18E 
+ 33  
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values of ρs(T*) and ρf (T*) in each of them using an NpT ensemble in a 
system of N = 8,000 atoms. Starting from the crystalline state at T =

300 K, we heated up the system at 1 K/ps to reach the target critical 
temperatures T* = 1115,1140,1190,1235 and 1255K in a crystalline 
state. At each temperature, the system was first equilibrated for t =

0.1ns. Afterwards, the average density was calculated during another 
t = 0.5ns. The last studied thermodynamic state of the crystal was then 
heated up with the same heating rate until the crystal completely 
liquified. Then the liquid was cooled down to temperatures T* = 1255,
1235,1190,1140,1115K with the same rate and again after equili
brating the system at each temperature ρf averaged over 0.5 ns. The 
results of the number densities of crystal and liquid at critical temper
atures were reported in Table 2. 

4.2.4. The interfacial free energy 
By substituting the MD data for N*, ρs(T*) and Δμ(T*)T* into Eq. (3), 

we calculated the nucleus/liquid interfacial free energy at each tem
perature T*. The results are reported in Table 2 and shown in Fig. 9. The 
values of γ(T*) in the studied temperature interval show a weak tem
perature dependence which was predicted theoretically [67] and reli
ably obtained in MD simulations [10,26,52,68]. The average value of 
calculated γ corresponding to the supercooling range T = (0.8 − 0.9)Tm 

is γavg = 0.127J/m2. A linear fit according to γ(T) = aT + b, to the 
values of γ(T*) gives us the temperature dependence of γ. By substituting 
the γ(T), ρs(T) and Δμ(T) into Eq. (3), we extrapolated N* to the region 
where spontaneous nucleation occurs. The result of this extrapolation is 
shown in Fig. 4 by the red dashed line. Using the seeding method in deep 
supercoolings would require small number of atoms in seed, N* < 18, 
which corresponds to a seed with radiusR < 5Ao, which would lead to 
large errors associated with incorrectly estimating the number of atoms 
in the nucleus, due to its numerous surface atoms. In Section 4.3 we will 
compare these numbers with those calculated from the spontaneous 
nucleation experiments via the mean lifetime method. 

4.2.5. The work of forming a critical nucleus 
The work of forming a critical nucleus (or activation barrier) can be 

obtained from W* ≡ ΔG* =
N*Δμ

2 using the MD data of Tm, Δμ, Δhm, 
Δcp,m. The calculated (reduced) value of the activation barrier W*/kBT 
varies from 75.6 at T = 0.9Tm to 16.1 at T = 0.8Tm. We extrapolated 
W*/kBT to deep supercoolings using the Δμ(T) from Eq. (6) and the 
extrapolated N*(T) explained in Section 4.2.4. The extrapolated values 
of W*

kBT change between (3.5 − 7.3) for the temperature range T =

(0.61 − 0.72)Tm, which is in accordance with the W*

kBT calculated in 

Section 4.3, W*

kBT = 5.5 − 9.3. These values of the reduced activation 
barrier are not far from that reported for SiO2 at deep supercoolings 
W*

kBT = 7.86 at T = 3000K [23] and for homogeneous crystallization of a 

Lennard-Jones liquid, W*

kBT = 11 − 22 [18]. 
We also calculated the Zeldovich factor, Z*, using the relation Z* =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δμ
6πkBTN*

√

in conjunction with Eq. (5). We found it increases from 0.004 at 

T = 0.9Tm to 0.02 at T = 0.8Tm. The use of Eq. (6) for Δμ leads to the 
same values. The Zeldovich factor is expected to be (10− 2). Results of the 
same order of magnitude were reported in MD simulations of Ge [26], LJ 
[52] and SiO2 [23]. 

4.2.6. The transport coefficient 
The transport coefficient at the liquid/nucleus interface was calcu

lated from Eq. (7) and the results were shown in Table 2. During 0.5 ns 
after the implementation, every 1ps, the size of the nucleus was calcu
lated by analyzing the atom configurations using the q6 method [64,65]. 
We carried out fifteen independent evolutions of the embedded critical 
crystal in six thermodynamic state points. The slope of the time 

dependence of 〈(N(t) − N* )
2
〉 at each temperature determined the value 

of D+. The results from the seeded simulations show that D+ decreases 
with supercooling (as expected) and changes by one order of magnitude 
in the temperature range investigated, as shown in Table 2. The range of 
D+, its order of magnitude, is consistent with the typical values observed 
in MD simulations of crystallization of other simple liquids at similar 
supercooling [21,23,24,26,52]. 

4.2.7. Nucleation rates 
Finally, combining the MD results for N*, D+, ρf and Δμ at each 

critical temperature, T*, we computed the kinetic pre-factors, J0 =

Z*D+ρf , and the nucleation rates, JCNT , from Eq. (4) at six temperatures 
T* = 1255, 1235, 1190, 1140, 1115K. The calculated kinetic pre- 
factors vary from J0(T* = 0.9Tm) = 1039m− 3s− 1 to J0(T* = 0.8Tm) =

1040m− 3s− 1. As expected, the kinetic pre-factor depends only weakly on 
the temperature. 

The nucleation rates, JCNT(T*), show a variation in the range (107 −

1033)m− 3s− 1 in the supercooling range of T = (0.8 − 0.9)Tm. Such an 
enormous change is not surprising because the nucleation rate is ex
pected to increase rapidly with increasing supercooling until the 
maximum is reached. 

After the nucleation rates were calculated from N*, D+, ρf and Δμ at 
six different thermodynamic state points, we fitted the nucleation rates 
with the CNT expression. The idea was to get extrapolate the JCNT(T)
outside the temperature range, where the seeding simulations and 
related calculations were performed. 

To do this, we needed to obtain the temperature dependence of N*, 
D+, ρf and Δμ. To calculate the Δμ(T), we used Eq. (5) or (6). The values 
of ρf (T) and ρs(T) were obtained from MD simulations at each temper
ature, T, according to the procedure explained in Section 4.2.3. To 
obtain the temperature dependences of N*(T) we substituted the γ(T), 
ρs(T) and Δμ(T) into Eq. (3) as explained in Section 4.2.4. From N*(T)
and D(T) and λ = 5.643Ao using Eq. (8) we calculated the D+(T). With 
N*(T), D+(T), ρf (T)and Δμ(T), we extrapolated JCNT(T) via Eq. (4). Fig. 5 
shows both the calculated JCNT(T*) (black squares) and the extrap
olatedJss(T) (red dashed line). The calculated JCNT(T) and extrapolated 
nucleation rates, using the more elaborated Eq. (6) to calculate Δμ, do 

Fig. 5. Nucleation rate versus scaled temperature. The black triangles refer to 
nucleation rates calculated from the MD results for N*, Tm, ρf (T*), D+(T*) and 
Δμ (Eq. (5)). The blue squares are the nucleation rates calculated from N*, Tm, 
ρf (T*), D+(T*) and Δμ (Eq. (6)), both without any adjustable parameter. The 
red circles refer to spontaneous nucleation rates obtained using the mean life
time method by JMD = 1/(τV). The black and red dashed lines show the Jss(T)
extrapolated from the seeded nucleation region to the spontaneous nucleation 
region using the N*(T), ρf (T), Δμ(T), and D+(T) via the CNT Eq. (4). 
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not differ from the JCNT(T) computed using Eq. (5) for Δμ. 
In the next section, we will obtain the steady-state nucleation rate, 

Jss, by MD using the mean lifetime passage method and the results will 
be extrapolated to the seeded nucleation region using the CNT in an 
inverse way as done above. 

4.3. Nucleation rates obtained directly by the mean lifetime method 

In the deep supercooling regime, i.e. T = (0.61 − 0.72)Tm, sponta
neous nucleation occurs within our MD time scales. Fig. 6 shows 
representative snapshots of the atomistic configuration as a function of 
time for three temperatures and five times. The OVITO software [69] 
was used to analyze the local environment of each particle. A common 
neighbor analysis [27,70] routine of the OVITO was used to identify the 
local environments of the particles. Particles that belong to the crystal 
nucleus (zinc-blende structure, i.e., an fcc lattice with two atoms in the 
base) are shown in green, whereas “amorphous” particles are shown in 
grey. To count the number of solid-like atoms, we calculated the q6 order 
parameter as explained in Section 4.2.1. Fig. 7 shows the number of 
solid-like atoms as a function of time for six independent samples. 
Because nucleation is inherently a stochastic process, nuclei are born at 
different times and places in each sample. The onset time when the 
number of solid-like atoms start to grow, τ, was averaged over fifteen 
independent initial configurations at each temperature, T = 1000,950,
900 and 850K. At each temperature, the volume of the simulation box 
size and τ were substituted into JMD = 1/(τV) to obtain nucleation rates. 
They were shown in Figs. 5 and 10 by red circles. The JMD varies in the 
range, (1033 − 1035)m− 3s− 1, which are comparable to the values ob
tained by the same method for supercooled SiO2 [23], BaS [27] and LJ 
[19]. 

After determining the nucleation rates, we calculated the value of γ 
by two distinct procedures explained in Section 2. In the first procedure, 
we assumed γ as a free fitting parameter obtained by a linear fit of 
Ln[J

̅̅̅
T

√

D(T)] versus 1/(Tρs
2Δμ2). The average of the self-diffusion coefficients 

of the Zn and Se atoms was used for calculating D(T). From the fitting 
procedure, the average interfacial free energy was γ = 0.132J/m2 when 
Eq. (5) was used for calculating 1/(Tρs

2Δμ2), and γ = 0.131J/m2 when 
Eq. (6) was used. This average interfacial free energy for ZnSe is in good 
agreement with the γavg = 0.127J/m2 calculated in Section 4.2.4 and has 
the same order of magnitude as the typical values reported from the 

homogeneous nucleation analyses in BaS, γ = 0.131J/m2 [27], oxide 
glasses (0.10 < γ < 0.25J/m2) [71] and a metallic system γ = 0.17J/m2 

[34]. 
Fig. 8 shows the Ln[J

̅̅̅
T

√

D(T)] as a function of 1/(Tρs
2Δμ2). Knowing the 

average value of γ, by substituting D(T), γ, Δμ (from Eq. (5) or (6)) and λ 
into Eq. (9), we extrapolated the JMD to the moderate supercooling 
regime. The result of the extrapolation is shown in Fig. 10 with red and 
green dashed lines. For the red dashed line, we used Eq. (5) to calculate 
Δμ, whereas for the green dashed line we used Eq. (6). 

In the second way, we obtained the values of γ at each temperature 
T = 1000,950,900 and 850K by substituting JMD, Tm, λ, D(T), Δμ(T)
into Eq. (9), and fitted the resulting data with a linear function γ = a +

bT. The calculated values of γ were shown in Fig. 9 by red circles and is 
in the range γ = (0.123 − 0.126)J/m2. The red dashed line refers to the 
linear fit to data shown by the circles. The value of γ extrapolated from 
the spontaneous nucleation regime to the seeded nucleation regime lies 
within the values calculated from the seeding method. The temperature 
dependence of γ is very weak. By substituting the γ(T), λ, D(T) and Δμ(T)

Fig. 6. Atomistic configuration as a function of time for three temperatures and five times. The common neighbor analysis shows the beginning of crystal nucleation 
and growth (green regions). For this particular ample at T = 1000K in this particular sample, a nucleus appears after around 660ps. However, this time decreases to 
20ps at T = 900K. 

Fig. 7. Number of solid-like atoms determined via calculating the q6 order 
parameter, as a function of time at T = 950K for six samples. Each line corre
sponds to a specific sample. To get the average birth time, τ, the onset times 
when the number of atoms in the nucleus, N, starts to grow were averaged over 
fifteen independent initial configurations. 
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into Eq. (9) we extrapolated JMD(T) from the spontaneous nucleation 
regime to the seeded nucleation regime. The result of this extrapolation 
is shown in Fig. 10 by a pink line. By substituting the γ(T), D(T) and λ in 

the pre-factor term of Eq. (9) i.e. J0 =
̅̅̅̅̅̅

γ
kBT

√
D(T)

λ4 , we obtained the kinetic 

pre-factors, which vary in the range of 1037 to 1038m− 3s− 1 for the 
temperature range T = (0.61 − 0.72)Tm. The extrapolated nucleation 
rates to deeper supercoolings reveal a well-known feature, which is the 
tendency to decrease after reaching a maximum [72]. 

The spontaneous nucleation rates, JMD, obtained by MD for ZnSe and 
other simple substances lie in the range of 1030 to 1035m− 3s− 1 

[16,23,33,34,35,36]. The previous analyses of experimental homoge
nous nucleation in several oxide glass-formers, shows that the experi
mental results of Jss span a range from 104 to 1020m− 3s− 1[71]. They are 
many orders of magnitude smaller than the theoretical values for these 
substances. One of the reasons for this discrepancy may be due to the 
procedure of calculating D(T). In experiments, usually the Stokes- 

Einstein-Eyring (SEE) equation is used, and the D(T) are calculated 
from the experimental values of viscosity. However, numerous studies 
show [73,74,75] that the SEE relation might breakdown at deep 
supercoolings, T < 1.2Tg, where Tg is glass transition temperature, 
which would lead to an enormous discrepancy in the pre-exponential 
term. In this work, however we obtained D(T) directly from the simu
lations. In future research, we will also determine the diffusion co
efficients from viscosity (via MD) by using the SEE relation to compare it 
with the D(T) determined here to test for a possible breakdown. 

According to the CNT, the spherical critical nucleus radius can be 
calculated by R* = 2γ/(ρsΔμ). From this relation by substituting ρs, Δμ 
from Eq. (5) and the calculated values of γ obtained from JMD, Tm, λ, 
D(T), Δμ(T) via Eq. (9), R* was calculated at four temperatures and the 
results are shown in the inset of Fig. 4 by green circles . From R* we 
evaluated the N* from the relation N* = ρs(4πR*3/3). The results are 
shown by green circles in Fig. 4. 

We also calculated W*

kBT by substituting the calculated values of N* and 

Δμ from Eq. (5) into Eq. (2). W*

kBT = 5.4 − 9.3 for temperature range T =

(0.61 − 0.72)Tm. Using the temperature dependence γ, and Δμ from Eq. 
(5) by substituting them into Eq. (2) and (3), we extrapolated W*

kBT to 

moderate supercooling. W*

kBT changes in the range (17.4 − 68.1) in tem
perature range T = (0.8 − 0.9)Tm, which are in good agreement with the 
results of the seeding method, (16.1 − 75.6). 

5. Summary and conclusions 

We used a robust inter-atomic potential to obtain the melting point, 
Tm, the enthalpy of melting, Δhm, the specific heat difference at the 
melting point, Δcp,m, the self-diffusion coefficient, D(T), the critical 
nucleus size, N*(T), and the times to form the first critical nucleus, τ, at 

Fig. 8. Linearized nucleation rate plot: ln[J
̅̅̅̅
T

√
/D] as a function of 1/(Tρs

2Δμ2). 
We used Eq. (5) (circles) and Eq. (6) (squares) to determine 1/(Tρs

2Δμ2). The 
dashed lines show the fits using the CNT Eq. (9). From the slope of the fitted 
lines we estimated the interfacial free energy. The value obtained from the red 
line is γ = 0.132J/m2, whereas from the blue line γ = 0.131J/m2. 

Fig. 9. Interfacial free energy versus supercooling T/Tm. The red circles refer to 
the values of γ calculated from Eq. (9) by using the values of JMD, Tm, D(T), λ 
and Δμ from Eq. (5). The black squares are the values of γ calculated in Section 
4.2.4 from MD data of N* and ρs and Δμ from Eq. (5) obtained via the seeding 
method using Eq. (3). The red dashed line shows a linear fit to the circles, 
extrapolated from spontaneous nucleation to the seeded nucleation regime. 

Fig. 10. Nucleation rate versus scaled temperature. The red circles refer to the 
steady-state nucleation rates obtained by the mean lifetime method from JMD =

1/(τV). The black triangles are the nucleation rates calculated from the MD 
results of N*, Tm, ρf , D+ and Δμ (Eq. (5)) via the CNT Eq. (4). The blue squares 
were calculated from MD results for N*, Tm, ρf , D, λ, and Δμ (Eq. (5)) via the 
CNT Eq. (9). The red and green dashed lines refer to the JMD extrapolated from 
the spontaneous nucleation regime to the seeded nucleation regime by 
substituting D, ρf (T), ∆μ, from Eq. (5) and (6) and the average value of γ =

0.132J/m2 when Eq. (5) was used for calculating 1/(Tρs
2Δμ2), and γ = 0.131J/

m2 when Eq. (6) was used, into the CNT Eq. (9) respectively. The pink line 
refers to extrapolated JMD(T) from the spontaneous regime to the seeded 
nucleation regime by substituting D,Δμ(T), λ and the temperature dependence 
of γ(T), into Eq. (9). The nucleation rate reaches a maximum and decreases at 
deep supercooling because of the reduced mobility (pre-factor effect) at low 
temperature. 
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several supercoolings from MD simulations. These quantities, combined 
with theoretically calculated values of the thermodynamic driving force, 
allowed us to obtain crystal nucleation rates, Jss(T), in two regions of 
supercooled ZnSe: i) brute-force values of JMD(T) at deep supercoolings 
for spontaneous nucleation; ii) calculated values by the CNT at moderate 
supercoolings for seeded nucleation. 

The interfacial free energy, γ, obtained from the critical nucleus sizes 
resulting from the seeding method at moderate supercoolings, and 
calculated from JMD at deep supercoolings shows a weak temperature 
dependence. This result corroborates previous reports for other mate
rials and is in line with the Diffuse Interface Theory of Nucleation. The 
extrapolated values of γ(T) obtained by the MD-mean lifetime method at 
deep supercoolings to shallow supercoolings cover the values of γ ob
tained from the CNT of the nucleation rates calculated by the seeding 
method. The smallest critical nucleus radius refers to the spontaneous 
nucleation region at T = 0.72Tm is R = 5Ao, which corresponds to two 
unit cells. 

The most relevant result is that the theoretical and simulated 
nucleation rates agree with each other. These extensive results for ZnSe 
corroborate previous MD simulations for Lennard-Jones, H2O, NaCl, 
SiO2, Ge and Ni, and reinforce the validity of the CNT. 
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